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Learning With Constraint Learning: New Perspective,
Solution Strategy and Various Applications
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Abstract—The complexity of learning problems, such as Gen-
erative Adversarial Network (GAN) and its variants, multi-task
and meta-learning, hyper-parameter learning, and a variety of
real-world vision applications, demands a deeper understanding of
their underlying coupling mechanisms. Existing approaches often
address these problems in isolation, lacking a unified perspective
that can reveal commonalities and enable effective solutions. There-
fore, in this work, we proposed a new framework, named Learning
with Constraint Learning (LwCL), that can holistically examine
challenges and provide a unified methodology to tackle all the
above-mentioned complex learning and vision problems. Specif-
ically, LwCL is designed as a general hierarchical optimization
model that captures the essence of these diverse learning and vision
problems. Furthermore, we develop a gradient-response based
fast solution strategy to overcome optimization challenges of the
LwCL framework. Our proposed framework efficiently addresses
a wide range of applications in learning and vision, encompass-
ing three categories and nine different problem types. Extensive
experiments on synthetic tasks and real-world applications verify
the effectiveness of our approach. The LwCL framework offers
a comprehensive solution for tackling complex machine learning
and computer vision problems, bridging the gap between theory
and practice.

Index Terms—Learning with constraint learning, hierarchical
optimization, gradient-response, learning and vision applications.

I. INTRODUCTION

IN RECENT years, a plethora of endeavors have emerged to
tackle contemporary intricate problems such as Generative

Adversarial Network (GAN) and its variants [1], [2], multi-task
meta learning [3], [4], hyper-parameter learning [5], [6], and
various challenging real-world vision applications [7], [8]. In
contrast to these conventional learning paradigms that solely fo-
cus on a single learning objective (e.g., classification and regres-
sion), these aforementioned modern complex problems often
necessitate the simultaneous handling of multiple interrelated
learning tasks. For instance, the well-known GANs often require
discriminator assisted branches in the process of adversarial
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game [2], [9]. Similarly, multi-task and meta learning intro-
duce task-specific classifiers as supportive sub-tasks to facilitate
the acquisition of enhanced generalization representations of
meta-features [3], [10]. Hyper-parameter learning involves the
construction of simple classifiers as interconnected tasks, aiding
the base model in attaining optimal hyper-parameters [11], [12].
Despite the presence of diverse motivations and mechanisms,
all these issues encounter the challenge of simultaneously ad-
dressing multiple interrelated tasks with coupled structures.
This hierarchical coupling induces complexity in the learning
process and constitutes the fundamental factor exacerbating the
difficulties encountered in problem-solving.

While considerable progresses have been made in various
related fields, existing state-of-the-art techniques are all tailored
for specific tasks and thus can only solve these different complex
problems in isolation. For example, it is challenging to utilize
GAN’s technique [1] to formulate and address the problem
of multi-task meta learning [3]. Fundamental differences also
persist in the methodologies employed across various vision ap-
plications. More generally, it indeed lacks a unified methodology
for revealing the commonalities and addressing the complexity
arising from the coupling of multiple sub-tasks.

In the following, this paper endeavors to establish a unified
and coherent optimization perspective that explores the intrinsic
relationships of these modern complex problems, considering
their potential coupling. Termed as Learning with Constraint
Learning (LwCL) in this paper, this perspective offers a com-
prehensive framework for understanding and formulating these
problems. Essentially, the LwCL problem can be formulated as
follows:

Problem 1: Learning with Constraint Learning (LwCL)
represents an innovative learning mechanism, distinguished by
a hierarchical arrangement of two interconnected learning tasks.
Within LwCL, the fulfillment of the primary objective task
(referred to as the Objective Learner or OL) relies upon the
successful completion of a lower-level learning task (referred to
as the Constraint Learner or CL).1 This hierarchical structure
endows the learning process with added depth, as the CL acts
as a constraint that must be satisfied, effectively guiding and
shaping the optimization process towards the attainment of the
overarching objective. Through this nested hierarchy, LwCL
enhances the learning process, fostering a more structured and
directed approach to achieving the desired learning outcome.

1The detailed concepts and applications of this framework will be presented
in Sections III and IV, respectively.
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In essence, LwCL embodies a nested hierarchy of learning
tasks, where each subtask contributes to the accomplishment
of the overarching objective. This intricate nested framework
adds complexity to the learning process and requires a more
sophisticated approach to problem-solving. It can be challenging
because the optimization process must balance the competing
objectives of completing the subtasks at each layer while also
optimizing the overall objective of the entire system. From a
macroscopic perspective, by introducing this constraint-based
hierarchical structure, LwCL can serve as a unified methodol-
ogy, capable of reveal commonalities and addressing a range of
complex learning problems.

Based on the above analysis, the primary objective of this
paper is to present a unified perspective, termed LwCL, which
aims to reinterpret and elucidate the underlying mechanisms of
modern complex problems. Building upon this foundation, we
have developed a generic hierarchical optimization framework,
encompassing reformulation and algorithmic components, to
unveil the potential coupling constraints among multiple tasks.
Additionally, leveraging the concept of dynamic best response,
we have employed an outer-product-based Hessian approxi-
mation technique to devise a rapid solving strategy from the
standpoint of implicit gradients. This approach enables accurate
tracing of the gradient feedback dynamics between the OL
and the CL, thereby yielding unprecedented advancements in
training stability and performance. Importantly, our proposed
method exhibits remarkable flexibility and adaptability, as it can
be seamlessly integrated into a diverse range of contemporary
complex learning problems, owing to the inherent tolerance of
the constraint learning paradigm towards the requirements of
the objective function. We also demonstrate that our proposed
framework can efficiently address a wide range of LwCL ap-
plications in the fields of learning and vision, including three
categories of problems, with a total of nine different types.

Our contributions can be summarized as follows:
� From a comprehensive and in-depth point of view, we

introduce a unified perspective, termed as Learning with
Constraint Learning (LwCL), to analyze, reformulate, and
address a wide array of complex learning problems that
exhibit underlying coupled relationships in the domains of
machine learning and computer vision.

� We propose a hierarchical optimization framework that
effectively formulates the potential dependencies and un-
covers the inherent coupling among multiple tasks within
LwCLs. This framework facilitates precise optimization of
the two learning tasks through a synergistic and interactive
approach, incorporating the proposed gradient-response
feedback.

� To alleviate high computational complexity issues asso-
ciated with naive learning strategy, we design an implicit
gradient scheme with outer-product Hessian approxima-
tion as fast solution strategy to efficiently solve the nested
optimization process, which is more computation-friendly
and suitable for diverse high-dimensional large-scale real-
world applications.

� We demonstrate that LwCL can efficiently address a wide
range of modern complex learning and vision applications,

including three categories of problems, with a total of nine
different types. The versatility and effectiveness of our
proposed LwCL framework is verified through extensive
experiments on both synthetic tasks and real-world appli-
cations.

II. REVIEW OF RELATED WORKS WITHIN LWCL

Based on Problem 1, we now proceed to comprehensively
understand and (re)formulate existing modern works from the
unified perspective of LwCL. Specifically, we categorize these
works into three classes, including Adversarial Learning (AL),
Auxiliary with Related Tasks (ART), and Task Divide and
Conquer (TDC), utilizing the lens of LwCL.

AL-Type Applications: As one of the most popular LwCTs,
AL-based methods exhibit a strong ability to model specific data
distribution by addressing the assisted discriminative tasks via
a dynamic adversarial game. OL and CL can be regarded as
generator learning and discriminator learning, respectively. For
example, vanilla GAN [1], as a discriminator-assisted learning
problem, can be interpreted as a dynamic adversarial game
that greedily finds the solution of the minmax formula through
an alternating iterative strategy. Metz et al. [13] proposed the
idea that gradients can be back-propagated through the un-
rolled optimization procedure in a differentiable way to address
the challenges of unstable optimization. Accordingly, various
variants of loss types and regulation (i.e., second-order gra-
dient loss [13], Hinge loss [14], and Lipschitz penalty [15])
also appear in the optimization objectives of GAN-variants.
Nonetheless, these methods still suffer from poor generation
quality, training oscillations, and other challenges that have
not been fully addressed. In addition to the narrowly defined
GANs and their variants, a series of adversarial vision tasks
in cutting-edge areas, such as image generation [2], [16], [17],
[18], style transfer [9], [19] and imitation learning [20], [21]
have risen in recent years. These problems employ different
task-specific losses and strategies to mitigate the reconstruction
discrepancy between different image domains in training pro-
cess. For example, Zhu et al. [22] constructed bi-directional cy-
cle generative-discriminative architecture and cycle consistency
loss to complete cross-domain style transfer. In reinforcement
learning, Pfau et al. [23] treated the discriminator as a regression
task providing scalar values rather than a binary classifier and
opened up new avenues of research by treating adversarial
learning programs as an actor-critic problem. Despite the good
intentions of these approaches, existing AL-based strategies still
suffer from several major challenges, such as training instability,
oscillations and mode collapse. The underlying reason is the
inability of learning mechanisms that rely on alternating itera-
tions to accurately portray the intrinsically complex dynamics
between the considered task and the introduced adversarial task.
Therefore, we proceed to present new mathematical tools to
model and solve such AL-type problems.

ART-Type Applications: In recent decades, a category of
typical learning tasks towards sophisticated applications have
addressed considered learning tasks with related auxiliary learn-
ing devices, named auxiliary with related tasks, such as medical
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Fig. 1. Overview of the proposed method. In (a) we present a novel LwCL perspective to comprehensively investigate and address these contemporary complex
problems with underlying coupling relationships in a unified manner. To effectively resolve the nested optimization process, (b) introduces a specially designed
dynamic gradient-response solution strategy tailored for LwCL. Lastly, (c) provides a comprehensive enumeration of nine major problem categories spanning
three broad application areas that our method can effectively tackle. Please notice that the diagram in (a) is just a simplified illustration for our LwCL mechanism.
However, in real applications, both OL and CL tasks will pose significantly higher complexity and challenges, such as non-convex learning problems.

image analysis (i.e., medical image registration and segmenta-
tion [24], [25], [26], [27] and low-light image enhancement [28],
[29]) and hyper-parameter learning [5], [11], [12], [30], [31]. OL
and CL can be regarded as objective learning task and auxiliary
learning task, respectively. For example, in the spirit that medical
image registration can provide more label information for one-
shot image segmentation, Xu et al. [7] developed a joint model
for simultaneous image registration and segmentation. For low-
light scenes, Xue et al. [29] proposed to introduce additional
detection and segmentation models to assist the low-light en-
hancement task. Actually, these approaches often generally rely
on naive empirical strategies (i,e., alternate learning) to solve
the problem and often suffer from disadvantages such as low
training efficiency, low performance, and poor generalization.
Similarly, in order to assist the base model for obtaining optimal
hyper-parameters, hyper-parameter learning usually introduces
simple classifiers that contain only a few fully connected layers
as auxiliary tasks, with first-order gradient based algorithms [5],
[30]. However, such methods possess a high algorithmic com-
plexity and are usually limited to low-dimensional data sce-
narios. Overall, an in-depth exploration focusing on how to
uniformly and efficiently formulate and address these ART-type
tasks is essential and necessary.

TDC-Type Applications: There is another class of learning
task construction ideas, i.e., dividing a complete learning process
into multiple subtask learning processes, called task divide and
conquer, with typical applications such as image deblur [8],
[32] and multi-task meta learning [3], [4], [6], [33], [34]. OL
and CL can be regarded as meta-feature/prior learning and
task-specific classifier/fidelity learning, respectively. For exam-
ple, meta-feature learning methods [4], [33] generally separated
the network structure into meta-feature extraction modules and
task-specific modules. The latter guides better learning of gener-
alization representations of meta-features by constructing losses
for multiple different tasks. Admittedly, the above methods

are usually confined to small-scale, low-dimensional simulation
scenarios, and still suffer from various unsolved challenges
such as training instability and computational inefficiency for
real-world high-dimensional applications. For image deblur
task, Zhang et al. [35] proposed semi-quadratic split-based deep
unrolling method to enhance deblurred images, divided into the
fidelity learning and a prior learning subproblems. Among them,
the prior learning task introduce a plug-and-play denoiser. Un-
fortunately, the fixed pre-trained denoiser, lacks generalization
applicability to various complex scenarios. In the subsequent
sections, we will develop a deeper understanding, modeling and
solving such TDC-type problems from the LwCL perspective.

III. LEARNING WITH CONSTRAINT LEARNING

In this section, we endeavor to establish a comprehensive hier-
archical optimization framework and a dynamic best response-
based fast solution strategy that enable a unified formulation
and resolution of various types of LwCL problems. The overall
framework is depicted in Fig. 1. In (a), we introduce a novel
perspective to comprehensively investigate and address contem-
porary complex problems (i.e., AL, ART and TDC) in a unified
manner. To effectively handle the nested optimization process,
(b) illustrates a comprehensive hierarchical optimization frame-
work that aims to redefine and reformulate LwCLs, and proposes
a specially designed gradient-response solution strategy tailored
specifically for LwCL (as denoted by the dashed rectangle).
Finally, (c) provides a comprehensive enumeration of nine major
problem categories across three broad application areas that our
method can effectively tackle.

A. Hierarchical Optimization Formulation for LwCL

Our investigation is centered around contemporary and intri-
cate LwCL problems, as delineated in Problem 1. Specifically,
we regard that the essence of LwCL lies in the construction of
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an OL, denoted as NO
θ with parameterization θ, which aims

to optimize the performance of the desired objective learning
task, such as generator learning or meta-feature learning. This
endeavor can be expressed as an optimization problem with
respect to θ, whereby the OL energy FOL encapsulates the
optimization objective base on the OL dataset DOL.

Given the inherent complexities in directly solving the OL,
it is customary to introduce multiple interrelated learning tasks
in the form of auxiliary CL, denoted asNC

ω with parameteriza-
tion ω, to assist the overarching objective of OL. To elucidate
the aforementioned notion, we generally introduce the more
abstract formulation of energy-constrained learning, which is
expressed as

min
θ∈Θ
Fω
OL

(
θ;NO

θ ,DOL

)
, s.t., ω ∈ ΓCL(θ), (1)

where ΓCL(θ) denotes the optimal constraint with respect to ω.
Due to the tight coupling and potential dependency between
the two variables, combined with the difficulty in accurately
determiningΓCL(θ), the aforementioned problem in (1) becomes
extremely complex.

Given this, we introduce a learning modeling approach with
constraints that characterizes the optimization process concern-
ing the variable ω. This auxiliary learning task can likewise
be framed as an optimization problem, wherein the CL en-
ergy Fθ

CL characterizes the performance of CL with variable ω,
formulated as

ΓCL(θ) := arg min
ω∈Ω
Fθ
CL

(
ω;NO

θ ,NC
ω ,DCL

)
. (2)

By combining (1) and (2), we observe that, the intrinsic hier-
archical relationship between the two learners (i.e., NO

θ and
NC

ω ) is explicitly encoded by the task-specific energy functions
(i.e., Fω

OL and Fθ
CL).2 Furthermore, it is worth noting that the

energy functionsFω
OL(or Fθ

CL) : Rm ×Rn → R are continuous,
while the set Ω ⊆ Rn represents a nonempty feasible region,
and Θ ⊆ Rm denotes the feasible set for the variables. In this
context, we refer to θ and ω as the outer-level (or OL-level)
variables and Fω

OL and Fθ
CL as the outer-level (or OL-level) en-

ergy and inner-level (or CL-level) energy, respectively. Building
upon the principles of Stackelberg game theory, we strive to
present a robust hierarchical optimization framework, serving
as a novel mathematical instrument to explicitly inscribe the
coupling dependencies of two key players.

Inherently, a notable asymmetry is observed between the
two levels of learning tasks, where Fθ

CL assumes the role of
a constraint upon Fω

OL, facilitating the derivation of optimal
feedbackω(θ) to be passed onto the core optimization objective.
This dynamic constrained learning process entails a high degree
of interdependence between the variables θ and ω, such that
every incremental update of θ is inevitably influenced by the
state ofω. For further understanding, (1) and (2) can be regarded
as a bi-level optimization problem concerning two variables,
where the OL-level and CL-level functions correspond to the
upper-level and lower-level functions, respectively. The curve

2The detailed design ofFω
OL andFθ

CL in specific applications will be presented
in Section IV.

schematic in Fig. 1(a) illustrates a simple visualization of a
bi-level optimization problem. To address practical applications
in high-dimensional real-world scenarios, we proceed to propose
a rapid and efficient solution strategy depicted in Fig. 1(b). This
strategy is distinguished by its dynamic best-response approach,
with arrows illustrating the flow of gradient updates pertinent to
two sub-problems.

B. Solution Strategy With Gradient-Response

Commencing from the dynamic gradient-response, we further
define the value-function ϕ(θ), leading us to the minimization
problem, minθ ϕ(θ) := Fω

OL(θ,ω(θ)). Progressing further, the
key to resolving this problem lies in computing the gradient of
the OL optimization objective:

∇θϕ(θ) = ∇θFω
OL(θ,ω(θ)) +∇ωFω

OL(θ,ω(θ))∇θω(θ)︸ ︷︷ ︸
GR

.

(3)
Notably, the direct gradient term ∇θFω

OL(θ,ω) showcases a
straightforward reliance on the OL variable θ and can be readily
obtained through simple computations in practice. Conversely,
the second gradient term, denoted as GR poses challenges in
its calculation due to the varying rate of ω(θ) with respect
to θ. Nonetheless, GR accurately captures the best response
gradient (in connection with ∇ωFθ

CL and ∇θFθ
CL) between the

two learning tasks and assumes a pivotal role in optimizing
LwCLs. Essentially, equipped with (3), the gradient ofNC

ω can
be dynamically and accurately back-propagated to NO

θ at each
iteration, effectively aiding in the optimization of its parameters.

Undoubtedly, evaluating the exact best response gradient of
(3) poses significant computational challenges for most existing
strategies, particularly when the dimensions ofω and θ are high.
To address this challenge, we leverage implicit methods, which
offer a direct and precise estimation of the optimal gradient. In-
spired by the implicit function theorem, we derive the following
equation based on the best response gradient, i.e.,∂Fθ

CL/∂ω = 0.
In contrast to the solution strategy, the best response gradient is
then substituted with an implicit equation, wherein ∇θω(θ) is
derived as:

∇θω(θ) = − [∇2
ωFθ

CL(θ,ω(θ))
]−1∇2

ωθFθ
CL(θ,ω(θ)). (4)

Considering the formidable challenges associated with com-
puting the Hessian and its inverse, we propose a fast solution
strategy by simplifying the second derivative to the first deriva-
tive, enabling the calculation of the best response Jacobian. This
strategy involves two key computational steps: implicit gradient
estimation and outer-product approximation.

Implicit Gradient Estimation: To circumvent the direct cal-
culation of multiple Hessian products and their inversions, we
introduce a linear solver system B based on (4), allowing us to
avoid the complexity associated with computing GR. Conse-
quently, the indirect response gradient can be reformulated as:

GR =
[∇2

ωθFθ
CL

]�
B, where

[∇2
ωωFθ

CL

]
B = −∇ωFω

OL, (5)
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where (·)� denotes the transposition operation. Through this
formulation, GR is solely dependent on the first-order condi-
tion, effectively decoupling the computational burden from the
solution trajectory of the constrained sub-task. This decoupling
greatly alleviates the pressure of propagating the backward
gradient in the constrained dynamics.

However, it is worth noting that the calculation of second-
order derivatives inGR remains intractable. The pressing need to
approximate the repeated computation of two Hessian matrices,
∇2

ωωFθ
CL and∇2

ωθFθ
CL, has led to the emergence of the concept

of outer-product approximation.
Outer-Product Approximation: To further suppress the com-

plexity of constrained optimization, we consider replacing the
original Hessian operation with the Gauss-Newton strategy and
introduce two corresponding outer products, as follows:

∇2
ωωFθ

CL ≈ ∇ωFθ
CL∇ωFθ�

CL , ∇2
ωθFθ

CL ≈ ∇ωFθ
CL∇θFθ�

CL .
(6)

By separating the gradient, this approach converts the highly
complex second-order derivative into a simple product operation
involving the first-order derivative, which significantly reduces
the algorithm’s complexity, especially in terms of memory con-
sumption. By combining (5)–(6), we establish the nonlinear least
squares problem by approximating the Gauss-Newton formula.
Plugging into the (5), thus we can obtain
(∇ωFθ

CL∇ωFθ�
CL

)2
B ≈ − (∇ωFθ

CL∇ωFθ�
CL

)� ∇ωFω
OL. (7)

To over simplify, we can express B with M as
follows B = M(∇ωFθ�

CL ∇ωFθ
CL)∇ωFω

OL, where M =
[∇ωFθ

OL(∇ωFθ�
CL ∇ωFθ

CL)∇ωFθ�
CL ]−1. Ultimately, we obtain

an approximate representation of the response gradient GR as
follows:

GR ≈ −∇θFθ
CL

[(∇ωFθ�
CL ∇ωFω

OL

) / (∇ωFθ�
CL ∇ωFθ

CL

)]
.
(8)

Drawing upon the aforementioned derivations, we can suc-
cinctly outline the comprehensive solution strategy as Algo-
rithm 1. During the training phase, given the current parameter
set θ, we initiate the optimization of ω based on the objective
function Fθ

CL, iteratively refining it to approximate the dynamic
best response, denoted as ω̂(θ) ≈ ω(θ). Subsequently, we prop-
agate the updated ω(θ) toFω

OL, where we calculate the response
gradient GR utilizing our proposed implicit gradient strategy
(i.e., (8)). This computed gradient, in turn, facilitates the iterative
update of θ until convergence is attained.

C. Discussion

By fundamentally elucidating the underlying coupling rela-
tionships among multiple learning tasks in complex problems,
our methodology provides a comprehensive understanding of
their intricate interplay. Moreover, the proposed dynamic best
response based solution strategy not only showcases scalability,
adaptability, and generalizability but also empowers its applica-
tion across a broad spectrum of large-scale, high-dimensional
real-world scenarios.

Unveiling the Intrinsic Coupling Relationships for Complex
Learning Problems: Traditional approaches in the past have
often relied on task-specific methodologies, limiting their

Algorithm 1: Fast Solution Strategy for LwCL.
Input: Initialization of θ,ω, energy functions Fω

OL and
Fθ
CL, and other essential hyper-parameters.

Output: The optimal parameters θ∗ and ω∗.
1: while not converge do
2: % CL− level variable probe
3: Obtain an approximation ω̂ to ω by updating

ω̂ ← ω − α∇ωFθ
CL(ω) (α: learning rate).

4: % OL− level variable probe
5: Calculate the response gradient GR with ω̂ and the

current θ, according to (8).
6: Calculate ∇θϕ(θ) with GR by (3).
7: Update θ ← θ − β∇θϕ(θ) (β: learning rate).
8: end while
9: return θ∗ and ω∗.

generalization capabilities and hindering their adaptability
to different tasks. Moreover, accurately capturing the
interdependencies between multiple related learning tasks
has proven challenging due to the empirical nature of designing
learning strategies. Hence, the need for a unified framework
arises, one that can reconcile diverse modeling approaches and
explore the inherent connections among these tasks. The LwCL
framework tackles these challenges by explicitly considering the
nested structure of learning tasks. Its hierarchical optimization
framework provides a profound understanding of the potential
coupling relationships among tasks, allowing for accurate
characterization. Additionally, the framework offers flexibility
in integrating various task constraints, rendering it suitable for
addressing a wide array of complex learning problems. By
leveraging its hierarchical structure, LwCL can act as a unified
methodology for uncovering coupled commonalities in various
complex learning problems and providing accurate forms for
modeling multiple interrelated sub-tasks.

Implicitly-Derived Fast and Efficient Solution Strategy: In-
deed, the most straightforward idea towards real-world vision
applications is to employ alternating iterative algorithms, where
one component is fixed while the other is optimized. While the
alternating iterative mechanism exhibits sound design princi-
ples, it often leads to a fragmentation between the two learning
tasks in practical implementations. Specifically, in (3), conven-
tional alternating methods directly overlook the computation
of the coupling term GR, thereby disregarding the gradient
feedback from CL to OL during the back-propagated process.
In contrast, our proposed method addresses this limitation by
emphasizing the collaborative synergy between the CL and
OL, which is unattainable in traditional alternating approaches.
Our proposed solution strategy accurately computes the optimal
gradient-response during each iteration of the back-propagation,
ensuring a more stable and expeditious convergence in the
learning process. In addition to the aforementioned intuitive
solutions, the development of bi-level optimization methods
capable of performing gradient-based explicit and implicit algo-
rithms through automatic differentiation holds significance [36].
Nevertheless, classical first-order gradient-based algorithms
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typically suffer from high complexity and low operational ef-
ficiency due to the computation of the recursive or Hessian gra-
dient for GR, rendering them impractical for high-dimensional
complex real-world scenarios.

We would like to emphasize that our proposed fast solution
strategy accurately computes the gradient-response GR. Fur-
thermore, it exhibits significant superiority over state-of-the-art
gradient-based bi-level optimization methods, particularly in
terms of convergence speed and computational complexity. In
regards to computational complexity, Algorithm 1 circumvents
the need for unfolded recurrent iterations or Hessian inversions
for GR, thereby avoiding any computations involving Hessian-
or Jacobian-vector products. The complexity of our strategy
primarily stems from computing the first-order gradient. Con-
sidering that the calculation of the function’s first derivative
and the Hessian-vector product share similar time and space
complexity, our proposed approximate method simplifies the
process of computing the gradient-response GR to evaluating
the first-order derivative a few fixed times. In the subsequent
experimental section, we undertake a comprehensive set of
numerical and real experiments to compare various traditional
gradient-based bi-level optimization methods and our fast solu-
tion strategy. Through these experiments, we aim to substantiate
the exceptional performance of our strategy, specifically in terms
of convergence speed and memory utilization. More details on
the comparative mechanisms can be found in Section V.

IV. APPLICATIONS OF LWCL

In this section,we provide an elaborate discussion on the
versatility of our proposed framework as a general method-
ology, which can be seamlessly applied to a diverse array of
LwCL applications, spanning domains such as AL, ART and
TDC within the realms of vision and learning. By applying our
framework to these diverse applications, we aim to demonstrate
its broad applicability and effectiveness across different domains
and tasks.

A. AL-Type Applications

In the realm of AL-type LwCL applications, our focus lies
on the introduction various discriminator learning tasks NC

ω

to assist with the generator learning tasks NO
θ . We emphasize

that CL entails the incorporation of discriminators (potentially
multiple), classifiers, and critics, each equipped with specialized
architectures designed to address diverse applications within
the realms of vision and learning. As for the constraint energy
function Fθ

CL, its fundamental concept lies in establishing the
relationship between the output distribution of NO

θ and the
distribution of the desired solution for NC

ω . In the subsequent
discussion, we primarily delve into four prominent categories
of representative applications, namely vanilla GAN, image gen-
eration, style transfer and imitation learning, which serve as
exemplars to showcase the versatility of our framework and its
efficacy in these domains.

1) GAN and Its Variants: Formally, the learning process
of GAN can be conceptualized as the minimization of a dis-
tance metric, denoted as “Distance”, between the generated

distribution PG and the data distribution Pdata, represented
as min “Distance”(PG, Pdata). Under the standard definition,
vanilla GAN dynamics advocate the incorporation of an auxil-
iary discriminator D to facilitate the training of the generator
G through an alternating learning strategy, seeking to mini-
mize the divergence in the objective minG maxD V(G,D). In
essence, as the most representative instance of LwCL, it can be
formulated as a dynamically coupled game process, expressed
as V[G(θ), D(ω)] = Fω

OL(θ) = −Fθ
CL(ω).

By employing an alternating direction iteration strategy, the
original learning strategy establishes two gradient flows us-
ing gradient descent: ωt+1 ← ωt −∇ωFθ

CL(ωt) and θt+1 ←
θt −∇θFω

OL(θt). This leads to two independent optimization
branches for ω and θ that proceed in parallel. However, the
optimization of the generator depends on the discriminator’s
parameters from the previous step, rather than the current step.
This inaccurate approximation fails to capture the coupled best
response gradient term depicted in (3). In contrast, our LwCL
framework accurately formulates and characterizes the potential
dependency of θ on the current ω. Consequently, the opti-
mization of the discriminator can be described by an exact
estimated dynamic best response, which is then dynamically
back-propagated to the optimization process for the generator
dynamics. In light of these considerations, our proposed frame-
work fundamentally circumvents the occurrence of training
instabilities and mitigates mode collapse issues. To validate
its effectiveness in addressing these challenges, we conduct a
comprehensive set of experiments in Section V, which showcase
the results of these experiments and provide compelling support
for the effectiveness of our framework.

2) Image Generation: Image generation aims to generate
intricate and diverse images from compact seed inputs. Exist-
ing research focuses on developing diverse generative models,
but they often encounter challenges during model training and
require manual tuning techniques to mitigate mode collapse
issues. With the versatility of our proposed framework, we
apply our learning strategy to state-of-the-art generative model
architectures. Specifically, we introduce different constrained
objectives, referred to as CL energy functionsFθ

CL, such as binary
cross-entropy loss, least squares loss and 1-Lipschitz limit-loss
with spectral norm. These objectives correspond to discrimina-
tors with different network structures. Remarkably, our LwCL
framework seamlessly integrates into various advanced GAN
variants without necessitating architectural modifications or loss
selection changes, thereby consistently enhancing performance.
In Section V, we present comprehensive experimental results
to demonstrate the effectiveness and efficiency of our LwCL
framework. These results showcase more stable training perfor-
mance and improved generalization capabilities, substantiating
the practical benefits of our approach.

3) Style Transfer: Style transfer aims to impose style
constraints by optimizing the adversarial loss between two
distinct datasets, while ensuring content preservation through
reverse transformations. Drawing inspiration from the circular
generative adversarial architecture proposed in Zhu et al. [9], we
establish a bidirectional adversarial learning framework to guide
the style transfer task. Specifically, by creating a cyclic mapping
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between two domains, denoted as X and Y , we introduce two
generators, namely G1 and G2, along with two discriminators,
denoted as DX and DY . To capture the complexity of
unsupervised learning, we design two components for our loss
functions: the least squares loss LGAN and cycle consistency
loss Lcyc, which account for the original input and the output
after inverse transformation. Within our LwCL framework,
we define the objective learner NO

θ and the constraint learner
NC

ω as the two generators with parameters θ and the two
discriminative classifiers with parameters ω, respectively.
The OL and CL objectives can then be expressed as Fω

OL =
−Fθ

CL = L(G1, G2, DX , DY ) = LGAN (G1, DY , X, Y ) +
LGAN (G2, DX , Y,X) + Lcyc(G1, G2). More details on the
setup of the forward and backward cyclic consistency functions
can be found in the experimental section.

4) Imitation Learning: Imitation learning endeavors to
achieve optimal decision-making by interacting with the envi-
ronment and acquiring knowledge from experiences. The ob-
jective of imitation learning is to simultaneously learn a state-
action value function, denoted as Qπ , which predicts the ex-
pected discounted cumulative reward, and an optimal policy that
aligns with the value function. Formally, we have: Qπ(s, a) =
Esi+j∼P,ri+j∼R,ai+j∼π(

∑∞
k=0 γ

jri+j |si = s, ai = a),whereP
and R denote dynamics of the environment and reward func-
tion, respectively. Here, s and a are the state and action, i
and j refer to the i-th and j-th steps in the learning process.
Within our LwCL paradigm, the actor and critic correspond
to the objective learner NO

θ and constraint learner NC
ω , re-

spectively. Let θ denote the parameters of the state-action
value-function and ω denote the parameters of the policy
π. The expressions for Fω

OL and Fθ
CL are given by: Fω

OL :=
Esi, ai ∼ π[div(Esi+1,ai+1,ri+1

(DQ)‖Q(si, ai))], and Fθ
CL :=

−Es0∼p0,a0∼πQ
π(s0, a0), where div(·‖·) represents any diver-

gence and DQ = ri+1 + γQ(si+1, ai+1). For specific settings
of the state-action value function, please refer to the experimen-
tal section.

B. ART-Type Applications

As mentioned previously, ART-type LwCL tasks solving so-
phisticated applications have introduced related tasks as aux-
iliary CL devices to augment the considered OL tasks. In the
subsequent subsections, we delve into three specific applications
that leverage auxiliary task constraints: medical image analysis,
low-light image enhancement and hyper-parameter learning.

1) Medical Image Analysis: Medical image analysis in-
volves the extraction of anatomical structures or lesions from
medical images. Drawing inspiration from the concept that
learning registration can provide additional pseudo-labeled
training data to assist segmentation [24], we leverage our LwCL
framework to dynamically address inter-task dependencies. In
our framework, the registration process serves as the objec-
tive learner NO

θ , while the segmentation process acts as the
constraint learner NC

ω . Building upon a base model [7], we
incorporate a semantic consistency constraint into the seg-
mentation task. Under our LwCL framework, the OL proce-
dures for the registration task can be formulated as Fω

OL :=

minθ Lreg(NR(Imov, Ifix, θ)), where NR represents the reg-
istration network with learnable parameters θ, and Imov and
Ifix denote the moving image and fixed image, respectively.
Subsequently, by obtaining the warped image Iwar, the CL
procedures for the segmentation task can be formulated as
Fθ
CL := minθ Lseg(NS(NR(Iwar, Ifix, θ));ω), where NS rep-

resents the segmentation network with learnable parameters ω.
Please refer to the experimental section in Section VI for specific
details on the settings of the loss functions.

2) Low-Light Image Enhancement: Low-light image en-
hancement aims to reveal hidden information in dark areas to
improve overall image quality. Drawing on the principles of
the Retinex theory, we delve into the impact of downstream
perceptual tasks, such as object detection, on the performance
of upstream enhancement tasks. Guided by this concept, we
construct a low-light enhancement network, inspired by recent
advancements [37], as our objective learner NO

θ . Furthermore,
we introduce a face detector proposed by [38] as an auxiliary
constraint learnerNC

ω . Within our LwCL framework, we employ
the unsupervised illumination learning loss Fω

OL := Lp + Ls as
the OL function. Here, Lp and Ls represent the pixel fidelity
term and smoothness term, respectively, which evaluate the
performance of the upstream enhancement task. For the en-
ergy function Fθ

CL of the constraint learner, we introduce the
anchor-based multi-task loss and progressive anchor loss to as-
sess the detection performance, defined as: Fθ

CL := LSSL(a) +
LSSL(sa). Detailed configurations of the training loss and
hyper-parameters can be found in the experimental Section VI.

3) Hyper-Parameter Learning: Hyper-parameter learning
aims to determine the optimal configuration of hyper-parameters
for a given machine learning task. Hyper-parameters are pa-
rameters that remain fixed during the training process of
a machine learning model. In essence, the goal of hyper-
parameter learning is to find a set of hyper-parameters that
minimizes the loss or maximizes the accuracy of the objective
learning task. Mathematically, it can be expressed as θ∗ =
argminE(Dtr,Dval)∼DL(gω(·),θ,Dtr,Dval), where L repre-
sents the objective function, gω(·)denotes the learning algorithm
applied to the hyper-parametersθ, and the model is trained on the
training datasetDtr and validated on the validation datasetDval.
Within our LwCL framework, the objective learnerNO

θ aims to
minimize the loss on the validation set Fω

OL(θ,ω;Dval) with
respect to the hyper-parameters θ, which include parameters
such as learning rate, batch size, optimizer, and loss weights.
On the other hand, the constraint learner NC

ω is responsible for
generating a learning algorithm by minimizing the training loss
Fθ
CL(θ,ω;Dtr) with respect to the model parameters ω, which

encompass weights and biases.

C. TDC-Type Applications

As mentioned previously, TDC-type LwCL tasks, inspired
by the concept of “divide and conquer” aim to analyze and
formulate the coupling relationship. This approach involves
decomposing the overall learning task into two distinct com-
ponents: the objective learner NO

θ and the constraint learner
NC

ω . In the subsequent sections, we delve into the practical
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implementations of two notable application types, namely image
deblurring and multi-task meta-learning learning and These
applications serve as representative examples to showcase the
efficacy and versatility of the the LwCL paradigm in addressing
diverse learning challenges.

1) Image Deblurring: Image deblurring aims to recover a
latent clear image u from a blurred counterpart b. The physical
model governing this process is represented by b = K ∗ u+ n,
where K, n, and ∗ denote the blur kernel, additional noise, and
the two-dimensional convolution operator, respectively. Typi-
cally, image deblurring entails two main tasks: deconvolution,
involving the estimation of sharp images from blurred obser-
vations, and denoising. Drawing inspiration from the plug-and-
play framework, which leverages semi-quadratic splitting, the
deblurring problem is decomposed into alternating iterations
of two sub-problems concerning u and an auxiliary variable z.
Within our LwCL framework, we define the constraint learner
NC

ω as the fidelity learning sub-problem, addressing u and z.
This can be formulated as {u, z} = argminu,z{Fθ

CL(u, z) :=
‖K ∗ u− b‖22 + μ‖u− z‖2 + k‖Wu‖1}, where μ represents
a penalty parameter, and W denotes the wavelet transform
matrix. The objective learner NO

θ can be viewed as the prior
learning process, governed by a denoiser Netθ(u), with regard
to the variable θ. Mathematically, it can be expressed as θ =
argminz Fω

OL(Netθ(u),θ). For further details on the parameter
configurations, please refer to Section VI.

2) Multi-Task Meta-Learning: Multi-task meta-learning
represents a formidable challenge that revolves around swiftly
adapting to novel tasks with limited examples. Among
these tasks, meta-feature learning stands out as a prominent
representative of multi-task and meta-learning, with the
objective of acquiring a shared meta feature representation
that encompasses all tasks. This is achieved by bifurcating the
network architecture into two distinct components: the meta
feature extraction part, responsible for generating the cross-task
intermediate representation layers (parameterized by θ), and
the task-specific part, characterized by the multinomial logistic
regression layer (parameterized by ωj). This framework allows
for building accurate machine learning models utilizing a
smaller training dataset, especially in the context of few-shot
classification tasks, which are widely recognized in the field.
Within the LwCL framework we propose, the intermediate
representation layers that produce the meta-features can be
viewed as the objective learner NO

θ for multiple task-specific
assignments. Consequently, we optimize the performance
of these meta-features using the validation set through the
defined loss function Fωj

OL (θ;Dj
val). Additionally, the forward

propagation of the classification layers at the network’s end
serves as the constraint learner NC

ω , wherein the training set
loss Fθ

CL(ω
j ;Dj

tr) is utilized to guide the learning process.

V. EXPERIMENTAL RESULTS

In this section, we first evaluate the learning mechanism of
our proposed framework through a meticulous examination of
numerical examples. This comprehensive evaluation will facil-
itate a profound understanding of the framework’s underlying

Fig. 2. Illustrating the convergence curve of ‖θk − θ∗‖/‖θ∗‖ and
‖Fω

OL(θk)−Fω
OL(θ

∗)‖/‖Fω
OL(θ

∗)‖ among series of mainstream bi-level op-
timization strategies.

principles and intricacies of its learning processes. Subsequently,
we proceed to conduct a series of rigorous and extensive ex-
periments, aimed at meticulously scrutinizing the efficacy and
viability of our proposed framework across a diverse array of
learning paradigms and visual applications. All of these experi-
ments are carried out on a high-performance computing system
comprising an Intel Core i7-7700 CPU operating at a frequency
of 3.6 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX
2060 GPU with 6 GB of dedicated memory.

A. Mechanism Evaluation

First and foremost, we commence by assessing the conver-
gence performance and computational complexity of our pro-
posed algorithm on a numerical example. Specifically, we intro-
duce a challenging toy example [39] wherein the CL problem is
formulated as a non-convex optimization task:

min
θ∈R,ω∈Rn

‖θ − a‖2 + ‖ω − a− c‖2,

s.t. [ω]i ∈ argmin
[ω]i∈R

sin(θ + [ω]i − [c]i), ∀ i, (9)

where [ω]i denotes the i-th component of ω, a ∈ R and c ∈ Rn

denote adjustable parameters. For this particular numerical ex-
ample, we set a = 2 and [c]i = 2, for any i = 1, 2, . . . , n. The
optimal solution for this numerical example is as follows

θ =
(1− n)a+ nC

1 + n
, and [ω]i = C + [c]i − θ, ∀ i,

where C = argminC{‖C − 2a‖ : C = −π/2 + 2kπ, k ∈ Z},
and the optimal value is (C − 2a)2 − (C − 2a)2/(1 + n). To
evaluate the convergence properties and computational com-
plexity, we conducted two sets of experiments: one in low-
dimensional simple scenarios with n = 1, and the other in
high-dimensional scenarios with larger values of n.

In the case of one dimension, we initialize the point
at (θ,ω) = (3, 3) and the optimal solution is (θ∗,ω∗) =
(3/4π, 3/4π − 2). Fig. 2 compares the convergence curves of
‖θk − θ∗‖/‖θ∗‖ and ‖Fω

OL(θk)−Fω
OL(θ

∗)‖/‖Fω
OL(θ

∗)‖ among
series of mainstream bi-level optimization strategies, including
Alternating Direction Iteration (ADI), CG [11], Neumann Series
(NS) [12], RHG [5], and BDA [31]. It can be observed that these
methods either deviate from the optimal solution throughout the
iteration process or fail to achieve fast convergence. In contrast,
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TABLE I
COMPARISON OF THE TIME COMPLEXITY (HOUR) AND SPACE COMPLEXITY

(MB) ON HIGH-DIMENSIONAL NUMERICAL SCENARIOS UNDER A GIVEN

CONVERGENCE CRITERION (I.E., ‖θk − θk−1‖/‖θk‖ ≤ 10−5)

our proposed LwCL algorithm converges to the optimal solution
more rapidly, showcasing its superiority.

To assess computational efficiency, we compare the time and
space complexity between our algorithm and current mainstream
algorithms in high-dimensional data scenarios. As depicted in
Table I, due to the non-convex nature of the inner constrained
objective function, ADI fails to converge in high-dimensional
scenarios. Implicit gradient methods such as CG and Neumann
exhibit lower computational complexity compared to explicit
gradient methods like RHG and BDA, as they efficiently avoid
the computationally expensive Hessian inverse. This renders
them impractical for large-scale real-world scenarios, particu-
larly when the dimensions of ω and θ are high. Conversely,
our LwCL strategy surpasses these algorithms in terms of time
consumption and memory footprint. As the dimensionality of the
ω variable exponentially increases to n = 105, all algorithms
except ours cause time and memory complexity to skyrocket,
or even crash. This experiment theoretically validates our algo-
rithm’s efficiency and applicability in high-dimensional scenar-
ios compared to other approximation algorithms.

Furthermore, we conducted experiments on real-world
datasets to validate the superiority of our learning strategy.
We employed the LSGAN [40] as the foundational network
architecture to validate the stability of our learning mechanism.
Fig. 3 reports the score comparison of FID and JS in each training
iteration of LSGAN on the CIFAR10 [41] and CIFAR100 [42].
The results clearly demonstrate that when combined with our
LwCL framework, LSGAN exhibits enhanced training stability
and achieves superior FID and Inception Score (IS) performance
compared to directly applying alternating learning strategies.

B. AL-Type Applications

In the subsequent analysis, we explore four distinct appli-
cations, namely GAN and its variants, image generation, style
transfer, and imitation learning, in order to validate the efficacy
and versatility of our methodology. Importantly, we showcase
that despite their diverse motivations and formulations, a wide

Fig. 3. Comparison of training efficiency results measured by FID and IS
on CIFAR10 dataset (listed top) and CIFAR100 datasets (listed bottom). The
shaded area represents the confidence interval, indicating uncertainty. More
stable training convergence curves and better metric scores can be obtained
by our LwCL framework.

range of AL-type LwCL applications, ALL can be uniformly
improved by our flexible methodology.3

1) GAN and Its Variants: Initially, we conduct extensive
experiments on synthesized datasets following a Mixed of Gaus-
sian (MOG) distribution. These experiments aim to provide a
quantitative and qualitative evaluation of our algorithm, consid-
ering aspects such as mode generation, computational efficiency,
and training stability. To establish a performance comparison, we
benchmark our approach against several state-of-the-art GAN
architectures, including VGAN [1], WGAN [2], ProxGAN [16],
and LCGAN [18]. For the synthetic data, we generate four
distinct types of MOG distributions: 2D Ring (consisting of 5 or
8 2D Gaussians arranged in a ring), 2D Random (comprising 10
2D Gaussians with random magnitudes and positions), 2D Grid
(comprising 25 2D Gaussians arranged in a grid), and 3D Cube
(comprising 27 3D Gaussians within a cube). Each Gaussian
distribution has a fixed variance of 0.02. During the training
phase, we construct training batches with 512 samples from
each mixture of Gaussian models, consisting of both real and
generated data. Additionally, we sample 512 generated images
for testing purposes.

To optimize the two networks, we uniformly employ the
Adam optimizer, with a learning rate of 10−4 for the dis-
criminator and 10−3 for the generator. Both the generator and
discriminator adopt a 3-layer linear network with a width of 256.
The activation function utilized is a leaky ReLU with a threshold
of 0.2. To provide a comprehensive comparison, we employ three

3Due to mainstream bi-level optimization algorithms being unsuitable in high-
dimensional real-world scenarios, we do not consider comparisons with these
methods in the following large-scale applications.
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Fig. 4. Qualitative comparison among mainstream solution strategies under four GAN variants (i.e., VGAN, WGAN, ProxGAN, and LCGAN) as basic
architectures, conducted on two synthetic MOG distribution datasets. The diversity of generated samples (number of generated classes/number of target classes)
is listed at the top. The shading of the dots represents the density of the final distribution, with darker dots representing greater density.

well-established metrics: Frechet Inception Distance (FID) [44],
Jensen-Shannon divergence (JS) [1], number of Modes (Mode).
These metrics serve as a basis for evaluating and contrasting the
performance of different approaches.

To demonstrate the superiority of our modeling and algorithm,
Fig. 4 presents a comprehensive comparison of mainstream
solution strategies in four GAN variants as basic architectures,

conducted on synthetic MOG datasets. We have chosen two
exemplary first-order approximation approaches from Table I:
RHG [5], a distinguished algorithm showcasing substantial per-
formance advantages grounded in explicit gradient methodol-
ogy, and NS [12], an algorithm highlighting notable efficiency
gains through implicit gradient techniques. Across two types of
MOG datasets (i.e., 2D Ring and 3D Cube), Fig. 4 presents a

Authorized licensed use limited to: Dalian University of Technology. Downloaded on November 23,2024 at 12:21:03 UTC from IEEE Xplore.  Restrictions apply. 



5036 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

TABLE II
COMPARISON RESULTS ON MAINSTREAM GANS (I.E., VGAN, LCGAN, WGAN, AND PROXGAN) WITH OR WITHOUT LWCL

comprehensive comparison of the sample quantities generated
by 4 distinct approximation algorithms within 4 sophisticated
GAN variant frameworks. Columns 2 to 5 distinctly portray
outcomes derived by applying diverse solving algorithms within
the specified structure of the GAN. It is evident that the original
models struggle to capture a significant number of distributions,
leading to severe mode collapse and unsatisfactory performance.
Additionally, under the solution of two types of approximation
algorithms, various GAN models also struggle to capture the
complete sample distribution, resulting in suboptimal generation
outcomes. In contrast, our method outperforms by yielding a
sample distribution that aligns more closely with the target
distribution, as indicated by the quantity of generated samples.

Table II further demonstrates the effectiveness of our method-
ology in alleviating the mode collapse issue. Specifically,
WGAN combined with LwCL achieves the lowest FID score
in the 2D Ring distribution, and obtains the lowest JS score in
the 3D Cube dataset. It is noteworthy that our flexible LwCL
methodology uniformly improves a wide range of existing
GANs, enhancing their overall performance.

2) Image Generation: In our experimental evaluation, we
examine the performance of several well-established generative
models, namely DCGAN [17], LSGAN [40], and SNGAN [45].
To assess their capabilities, we employ widely used benchmark
datasets, including CIFAR10 [41], CIFAR100 [42] and
CelebA-HQ [43]. For evaluating the generative models, we
employ two widely recognized metrics: Inception Score (IS)
for evaluating generation quality and diversity, and Fréchet
Inception Distance (FID) for capturing the issue of mode
collapse. Under our LwCL framework, we consider DCGAN,
which incorporates standard binary cross-entropy loss for
unsupervised training and employs a coupled game process of
OL and CL. The objective functionsFω

OL andFθ
CL for DCGAN are

TABLE III
COMPARISON RESULTS OF FID AND IS SCORE ON CIFAR10 AND CIFAR100

DATASET

defined as follows: Fω
OL := Ev∼N(0,1)

[log(1−D(G(v)))], and
Fθ
CL := Eu∼Pdata [log(D(u))] + Ev∼N(0,1)

[log(1−D(G(v)))].
Similarly, for LSGAN, which employs a least squares
loss, the objective functions Fω

OL and Fθ
CL are constructed

as follows: Fω
OL := Ev∼N(0,1)

[D(G(v))− c]2, and Fθ
CL :=

Eu∼Pdata [D(u) − b]2 + Ev∼N(0,1)
[D(G(v)) − a]2. As for

SNGAN, it incorporates spectral normalization to ensure
the 1-Lipschitz continuity constraint. The objective function
Fθ
CL for SNGAN is defined as follows: Fθ

CL := sup||D||≤1
Eu∼Pdata [D(u)]− Ev∼N(0,1)

[D(G(v))]. Furthermore, in our
face generation experiment on the high-resolution CelebA-HQ
dataset [43], we employ StyleGAN as the backbone architecture.

Table III further highlights the consistent performance im-
provements achieved by state-of-the-art GAN architectures
when incorporated into our LwCL framework. Moreover, Fig. 5
visually demonstrates the efficacy of our LwCL methodol-
ogy in conjunction with StyleGAN. It showcases the superior
style-content trade-off achieved, validating the versatility and
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Fig. 5. Comparison results of face generation on CelebA-HQ dataset [43]. Given the same latent feature variables, our method (i.e., StyleGAN with LwCL) is
capable of generating more natural and realistic face details, with sharper and well visualized facial contours.

effectiveness of our flexible solution strategy. Notably, our
approach excels in generating realistic facial structures while
effectively mitigating twist distortion.

3) Style Transfer: We select the CycleGAN model [9] as
the foundation for our architecture and conduct experiments
on the FFHQ dataset [46] to explore unsupervised style trans-
fer. Our approach leverages two Generator networks and two
Discriminator networks, forming a bidirectional LwCL frame-
work. This framework incorporates cycle-consistency loss in
two loops to assess the ability to reconstruct an image from
its transformed counterpart. The cycle consistency loss, de-
noted as Lcyc(G1, G2), captures the discrepancy between the
original image and its reconstructed version in both the for-
ward and backward mapping processes. Mathematically, it
is defined as the summation of the 
1 norm of the dif-
ference between the transformed and reconstructed images,
computed as Lcyc(G1, G2) = Ex∼Pdata(x)[‖G2(G1(x))‖1] +
Ey∼Pdata(y)[‖G1(G2(y))‖1]. In the bidirectional mapping pro-
cess, the optimization of variables in the two objective functions
can be mutually exchanged and modeled. We ensure a fair
comparison by following the experimental setups and model
architecture detailed in [9].

Fig. 6 visually demonstrates the remarkable advantages of our
proposed framework in generating samples of higher quality
and richer detailed textures. In comparison to the sparse and
unrealistic textures produced by the standard CycleGAN, it is
evident that the network integrated with our LwCL framework
can generate zebra stripes that are more abundant, natural, and
realistic. In Fig. 7, we observe significant fluctuations in the
visual perceptual quality of the generated images by the standard
CycleGAN throughout the training process. With the standard
CycleGAN, high-quality zebra images can be generated at 40
epochs. However, at 60 epochs, a small amount of background
stripes starts to appear, and by 120 epochs, the stripes that should
be generated on the horse are completely transferred to the
background. In contrast, when our LwCL strategy is incorpo-
rated, the generation of zebra patterns becomes gradually stable,
and the authenticity of the texture is significantly enhanced.
This improvement effectively mitigates the occurrence of mode
collapse, ensuring the preservation of desirable characteristics
in the generated images.

4) Imitation Learning: In the formulated Markov decision
process, denoted as M = (S,A, ρ, P,R, γ), we define the

Fig. 6. Comparition results for style transfer (i.e., horse → zebra) on
FFHQ [46]. CycleGAN combining with our proposed LwCL methodology could
generate more accurate transformation full of realistic textures.

Fig. 7. Visualization comparison during training between standard CycleGAN
and our method. It can be observed that standard CycleGAN is not stable (with
or without streaks), while the generation quality after introducing LwCL is
significantly improved.

action spaceA, state spaceS , and reward functionR : S ×A �→
R. The initial state s0 is drawn from the distribution ρ(·),
and the discount factor γ ∈ (0, 1) is applied. In this context,
the actor π interacts with the environment to learn the state-
action value function Qπ(s, a), followed by the update of the
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Fig. 8. Comparison of reward scores in terms of the training curve (left),
and final quantitative performance under two simulated environments, i.e.,
“Walker2D” and “Hopper” (right). The shaded area represents the confidence
interval, indicating uncertainty.

actor π based on Qπ(s, a). The objective of the policy is to
maximize the expected discounted cumulative reward, given by:
π∗ = argmaxπ Es0∼p0,a0∼π(Q

π(s0, a0)), where s0, a0, and p0
represent the initial state, initial action, and initial state distribu-
tion, respectively. For our experiment, we employ the PyBullet
physics simulator and publicly available datasets tailored for
data-driven deep reinforcement learning. Following the defini-
tions and experimental settings of recent studies [20], [21], we
design an agent with an actor-critic structure to predict actions
that deceive the discriminator. The discriminator, on the other
hand, is trained to distinguish between samples generated by the
policy π∗ and an expert policy π̂. To compute the reward func-
tion R, we adopt the form h(s, a) = log(D(s, a))− log(1−
D(s, a)). Additionally, both Generative Adversarial Imitation
learning (GAIL) and our method incorporate the R1 gradient
penalty regularizers.

Fig. 8 presents the average policy return and standard error
for two simulated environments, namely “Walker2D” and “Hop-
per”. The average policy return and its standard error are plotted
to illustrate the performance of GAIL. It is evident that the GAIL
curve exhibits significant instability and lacks a convergent
trend. In contrast, our proposed solution technique ensures a
more stable convergence during training with reduced deviation.
Additionally, we provide the final return achieved throughout
the training episodes, which serves as an indicator of the per-
formance improvement achieved by GAIL when employing our
novel solution techniques.

C. ART-Type Applications

In the subsequent sections, we delve into three distinct ap-
plications, each accompanied by the introduction of relevant
task constraints. These applications encompass medical image
analysis, low-light image enhancement, and hyper-parameter
learning.

1) Medical Image Analysis: We evaluate the segmentation
performance on a hybrid dataset by using 426 mixed med-
ical scans, which is sampled from three standard datasets,
ABIDE, ADNI and PPMI. During the training phase, the
scanned images are divided into 346, 40, and 40 volumes
for training, validation, and testing, respectively. To capture
both global and local differences in appearance, we define
the energy function Lreg = Lsim + λscc ∗ Lscc, where Lsim

TABLE IV
COMPARISON RESULTS OF DIFFERENT METHODS FOR JOINT REGISTRATION

AND SEGMENTATION TASKS

is the multi-scale local cross-correlation in appearance [27],
and Lscc is the semantic content consistency loss [24], i.e.,
Lscc =

1
2 (KL(pt||pw+pt

2 ) + KL(pw||pw+pt

2 )). Here KL denotes
the Kullback-Leibler divergence, and pw and pt are the warped
prediction and target prediction, respectively. For segmentation,
the energy function is formulated as a composite loss, denoted
as Lseg = Ldice + λmce ∗ Lmce. This hybrid loss integrates the
multi-class cross entropy loss Lmce with the dice coefficient
loss Ldice, establishing a balanced and robust framework for
segmentation tasks [25]. In our training, we empirically set the
balancing parameters λscc = 10 and λmce = 1, and use ADAM
optimizer with learning rate of 4 ∗ 104. To evaluate the per-
formance of registration and segmentation, we employed well-
established metrics such as the Dice score, Hausdorff distance
(HD95), and average surface distance (ASD). We compare our
method to several state-of-the-art methods, including a) Deep
learning registration-based segmentation methods, VxM [47],
LKU-Net [48], and TransMorph [49]. b) Deep learning seg-
mentation methods, UNet [7], MASSL [50], and CPS [51]. d)
joint registration and segmentation methods, SST [26], DeepAt-
las [24], DataAug [27], and BRBS [25].

Table IV presents quantitative comparisons for joint regis-
tration and segmentation tasks, demonstrating that our method
achieved the highest Dice score and the lowest HD95 and ASD
metrics in registration and segmentation, respectively. Fig. 9
presents the 2D visualization results of the registration method
compared to other approaches. Traditional registration methods
or approaches that simply separate the two tasks have shown
more registration errors, as indicated by the increased number
of error points within the red box. In contrast, our method
demonstrates the smallest mislabeling regions on the lateral
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Fig. 9. Visual results of state-of-the-art medical image registration methods for the lateral ventricle (LV) and brain stem (BS) with 2D visualization. The upper
row displays the error map between the warped label and the target, highlighted in shades of pink and yellow. The lower row illustrates the deformable field, along
with the labels for both the source and the target.

Fig. 10. Qualitative evaluation of various medical image segmentation methods for the brain anatomical structures, with 2D slice visualization Top: small brain
structure 3rd/4th Ventricle (Ven); Bottom: large brain structure Cerebral White Matter (CrWM).

ventricle (LV) and brainstem (BS), as indicated by the yellow and
pink areas. Additionally, we provide qualitative results in Fig. 10,
illustrating the robust segmentation performance of our method
at complex termination sites in the structural white matter of
the brain and the finer segmentation quality achieved on the
cerebellar tissue and the 3/4 ventricles.

2) Low-Light Image Enhancement: We conduct low-light
enhancement experiments on DarkFace dataset, and adopt
the well-known no reference metrics (i.e., DE and LOE). To
benchmark our method, we compare it against several state-of-
the-art approaches, including RetinexNet [52], KinD [53],
ZeroDCE [54], DeepUPE [55], FIDE [56], DRBN [57] and
SCI [37]. As mentioned in [37], we introduce the pixel
fidelity term Lp and a smoothness term Ls for NO

θ , which are
formulated as Lp =

∑T
t=1 ‖xt − ŷt−1‖, Ls =

∑N
i=1

∑
j∈N (i)

wi,j‖xt
i − xt

j‖, where ŷt−1 denotes the self-calibrated
variable, N is the total number of pixels, wi,j represents
the weight function. As for NC

ω , we also introduce

the anchor-based multi-task loss and progressive anchor
loss [38], defined as: Fθ

CL := LSSL(a) + λLSSL(sa).
Here, LSSL(pi, p

∗
i , ti, gi, ai) =

1
Nconf

((
∑

i Lconf (pi, p
∗
i )) +

β
Nloc

∑
i p
∗
iLloc(ti, gi, ai)), where Nconf and Nloc indicate the

number of positive and negative anchors, and the number of
positive anchors, respectively. Lloc is the smooth loss between
the predicted box ti and ground-truth box gi using the anchor
ai, and Lconf is the softmax loss in terms of two classes.

In Fig. 11, we compare the visualization results. It can be
seen that although some methods can successfully enhance the
brightness of the image, none of them can restore the clear
image texture. The DE score is reported below, and a higher DE
value indicates better visual quality. In comparison, our method
produces the most visually pleasing results, can not only learns
to enhance the dark area while restoring more visible details but
also avoids over-exposure artifacts. We report the quantitative
results in Table V. It can be seen that our method numerically
outperforms existing methods by large margins and ranks first
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Fig. 11. Visual results of state-of-the-art low-light enhancement methods on the Darkface dataset. Our method improves brightness for a more natural and realistic
effect. Larger DE indicates more perceptually favored quality. Zoom-in regions are used to illustrate the visual differences.

TABLE V
QUANTITATIVE RESULTS (DE↑, LOE↓) ON THE DARKFACE DATASET

across all metrics. This further endorses the superiority of our
method over current state-of-the-art methods in generating high-
quality visual results.

3) Hyper-Parameter Learning: We consider a specific data
hyper-cleaning example [58]. In this scenario, we aim to train a
linear classifier using a given image dataset, but encounter the
issue of corrupted training labels. To address this, we adopt soft-
max regression with parametersω as our classifier and introduce
hyperparameters θ to assign weights to the training samples.
Initially, we define the cross-entropy function 
(ω;ui,vi)which
measures the classification loss using the classification parame-
ter ω and the data pairs (ui,vi). The training and validation sets
are denoted as Dtr and Dval, respectively. Next, we introduce
the CL function Fθ

CL as the following weighted training loss,
given by Fθ

CL(ω) =
∑

((u)i,(v)i)∈Dtr
[δ(θ)]i
(ω;ui,vi). Here θ

represents the hyperparameter vector that penalizes the objec-
tive for different training samples. The element-wise sigmoid
function δ(θ) is applied to restrict the weights within the range
of [0, 1]. Furthermore, we define FOL as the cross-entropy
loss with 
2 regularization on the validation set, i.e., FOL(θ) =∑

((u)i,(v)i)∈Dval

(ω(θ);ui,vi) + η||ω(θ)||2, where η is the

trade-off parameter. Three well known datasets including
MNIST, FashionMNIST and CIFAR10 are used to conduct the
experiments. Specifically, the training, validation and test sets
consist of 5000, 5000, 10000 class-balanced samples randomly
selected to constructDtr,Dval andDtest, then half of the labels
in Dtr are tampered. We adopted the architectures proposed
by [5] as the feature extractor for all the compared methods.

TABLE VI
REPORTING RESULTS OF EXISTING METHODS FOR SOLVING DATA

HYPER-CLEANING TASKS

Table VI presents a comprehensive comparison of our LwCL
framework with popular first-order bi-level optimization algo-
rithms, including explicit gradient approximation algorithms:
RHG [5], Truncated RHG (T-RHG) [6], and BDA [31]; as
well as implicit gradient approximation algorithms: CG [11],
Neumann [12], in terms of F1 score and running time. The results
clearly demonstrate the superior performance of our method in
terms of F1 score compared to the other hyperparameter opti-
mization techniques. Notably, our method significantly outper-
forms all relevant algorithms in terms of running time, achieving
a substantial improvement of nearly an order of magnitude. This
further endorses the superiority of our flexible solution strategy
over current mainstream optimization algorithms, validating the
low complexity and high efficiency.

D. TDC-Type Applications

In the subsequent sections, we proceed to showcase the effi-
cacy of LwCL through the evaluation of its performance in two
prominent TDC-type LwCL applications: image deblurring and
multi-task meta-learning.

1) Image Deblurring: We conduct image deblurring exper-
iment on a data benchmark, containing 400 images from the
Berkeley Segmentation dataset, 4744 images from the Waterloo
Exploration database, 900 images from the DIV2K dataset and
2750 images from the Flick2K dataset. More specifically, we
used the DRUNet in DPIR [8] containing four scales as the
base network. In the specific implementation, the subproblem
for u is solved by closed-form solution based on the fast Fourier
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Fig. 12. Visual results of state-of-the-art image deblurring methods. Our method maintains a more realistic, natural and clear restoration result in terms of tone
and texture. Two well-known metrics (PSNR↑, SSIM↑) are listed to quantify the generated image quality.

TABLE VII
COMPARISON OF QUANTITATIVE RESULTS (I.E., AVERAGED PSNR AND SSIM
SCORES) AMONG STATE-OF-THE-ART IMAGE DEBLURRING METHODS (I.E.,

FDN [59], IRCNN [32], IRCNN+ AND DPIR [8])

transform, and the subproblem on z is obtained by an updated
denoiser Netθ(u). Unlike the original method that treats the
denoiser as a fixed pre-trained network, under our LwCL frame-
work, the parameters of the deblurring network are dynamically
updated as learnable variables. As discussed earlier, it can be
understood that the lower variable ω is a combination about two
optimized variables, i.e., ω = {u, z}. Thus, by jointly learning
two sub-tasks, our method can improve robustness and gener-
alization to various complex noise scenarios. Each scale has a
skip connection between the 2× 2 stride convolution downscale
and the 2 × 2 transpose convolution upscale operations. The
number of channels per layer from the first to fourth scale is
64, 128, 256 and 512 respectively. Four blocks of residuals are
used in the down-sampling and up-sampling operations at each
scale.

We qualitatively and quantitatively evaluated the perfor-
mance of a series of relevant methods, including FDN [59],

IRCNN [32], IRCNN+ and DPIR [8]). As shown in Table VII,
we report the performance of the current methods under five
different sizes of blur kernel settings (i.e., Ki, i = 1, . . . , 5). All
experiments were performed under a uniform noise criterion
with a default noise level n = 7.65. In comparison, our method
achieves the best PSNR scores under all five blurs and performs
best in both average PSNR and SSIM scores. In addition, we
show a visualization of the perceptual results in Fig. 12. As
can be seen, for the deblurring task, our method outperforms
other methods in terms of color recovery, detail retention, and
achieves the best visual performance. This further endorses the
superiority of our method over current state-of-the-art methods
in image deblurring.

2) Multi-Task Meta-Learning: We conduct the N -way M -
shot classification experiments where each task is to discriminate
N separate classes and it is to learn the hyper-parameter θ such
that each task can be solved only with M training samples.
Typically, we separate the network architecture into two parts:
the cross-task intermediate representation layers (parameterized
by θ) outputs the meta features and the multinomial logistic
regression layer (parameterized by ωj) as our ground classifier
for the j-th task. During training, we conduct our experiment on
a meta training data set D = {Dj}, where Dj = Dj

tr

⋃Dj
val is

linked to the j-th task. Then, we consider the cross-entropy func-
tion 
(θ,ωj ;Dtr) as the task-specific loss for the j-th task and
thus the Fθ

CL can be defined as Fθ
CL({ωj}) = ∑

j 
(θ,ω
j ;Dj

tr).
Similarly, we also utilize the cross-entropy function but define it

based on Dj
val as F{ωj}

OL (θ) =
∑

j 
(θ,ω
j ;Dj

val). We validate
the performance based on the widely used Omniglot dataset, and
consider ResNet-12 with Residual blocks as the backbone. Be-
sides, we introduce the task-and-layer-wise attenuation [60] to
control the influence of prior knowledge for each task and layer.

As illustrated in Table VIII, we conducted a series of
N-way M-shot classification experiments. We compare our
algorithm with several advanced approximation algorithms,
such as MAML [3], Meta-SGD [33], Reptile [34], iMAML [4],
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TABLE VIII
MEAN TEST ACCURACY OF VARIOUS METHODS (MODEL-BASED METHODS AND GRADIENT-BASED BI-LEVEL METHODS) ON FEW-SHOT CLASSIFICATION

CLASSIFICATION PROBLEMS (1-SHOT AND 5-SHOT, I.E., M = 1, 5, N = 5, 20, 30, 40) ON OMNIGLOT

RHG [5], and T-RHG [6]. In comparison, our algorithm achieved
the highest classification accuracy except in the 5-way 5-shot
and 20-way 5-shot tasks. Indeed, with more complex few-shot
classification problems (such as 30-way and 40-way), our LwCL
showed significant advantages over other methods. This further
illustrates the versatility and effectiveness of our algorithm in
the field of complex learning.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we have introduced a novel perspective called
Learning with Constraint Learning (LwCL) to provide a deeper
understanding of their underlying coupling mechanisms for
efficiently solving contemporary complex problems in machine
learning and computer vision. Our proposed framework provides
a unified understanding of the intrinsic mechanisms behind
diverse problems. By establishing a general hierarchical opti-
mization framework and a dynamic best response-based fast
solution strategy, we have demonstrated the effectiveness of our
approach in formulating and addressing LwCLs. Through exten-
sive experiments we have verified the efficiency of our proposed
framework in solving a wide range of LwCL problems, span-
ning three categories and nine different types. Future research
can focus on further exploring and extending the capabilities
of LwCL in addressing even more challenging problems and
advancing the state-of-the-art in machine learning and computer
vision. The findings presented in this paper contribute to a deeper
understanding and efficient resolution of complex problems
in learning and vision, providing valuable insights for future
research and applications in the field.
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