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Uncertainty-Aware Sparse Transformer Network for
Single-Image Deraindrop

Bo Fu , Yunyun Jiang , Di Wang , Jiaxin Gao , Cong Wang , and Ximing Li

Abstract— Image Deraindrop aims to enhance the visibility and
clarity of the image by eliminating unwanted visual artifacts, such
as raindrops or rain streaks. Despite remarkable advancements in
image raindrop removal, the sparse distribution of raindrops and
the various levels of degradation within raindrop regions are still
not fully considered: 1) globally, raindrops often exhibit a unique
sparse distribution in images, but the existing methods apply a
uniform treatment of pixels and 2) locally, raindrops have specific
degradation within raindrop regions, such as variations in shape,
size, and transparency, but current approaches fail to effectively
model them. To address these problems, this work proposes
an uncertainty-aware sparse Transformer network (USTN) for
image Deraindrop. Specifically, to characterize the sparsity of
raindrops, we develop a sparse Transformers backbone in which
several sparse Transformers blocks (STBs) are deployed at each
scale. To ensure effective sparse feature learning, we introduce a
top-k sparse attention (TSA) layer in each STB, which dynam-
ically selects high-score attention and generates corresponding
sparse feature responses. To effectively model various degrees
of degradation in local raindrop regions, we incorporate image
uncertainty estimation, which can explicitly show the observation
that worse degradation exhibits higher uncertainty. Motivated
by this, we design two decoding branches, one for estimating
uncertainty maps and the other for generating raindrop-free
images. We then formulate an uncertainty-driven loss to better
push the USTN to remove raindrops guided by uncertainty
maps. In addition, to further refine the learned sparse features,
we propose a pyramid feature refinement (PFR) module to fully
mine the local features under multiscale receptive fields and
a residual channel–spatial attention (RCSA) module to stimu-
late the effective expression of the deepest features. Extensive
experiments demonstrate that the proposed USTN outperforms
state-of-the-art methods and is top performing. We also apply
USTN to the semantic segmentation task to reveal the promising
semantic-aware capability.
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I. INTRODUCTION

DUE to the raindrops adhering to the lens on a rainy day,
the captured images often suffer serious content loss,

such as edges, textures, colors, and background details [1],
[2], [3]. This not only leads to declined visual quality but also
adversely affects various high-level semantic perception tasks,
such as object detection, semantic segmentation, autonomous
driving, and so on. Therefore, the removal of raindrops
becomes particularly crucial. Given an image with raindrops,
the goal of raindrop removal is to restore the corresponding
clear image from this degraded image. In recent years, exten-
sive studies have been dedicated to addressing this ill-posed
problem. Among them, the most popular approaches are plain
CNN-based methods [3], [4], GAN-based methods [2], and
Transformer-based methods [5], [6].

Early, CNN-based image Deraindrop methods [4] simply
employ a network with small parameter sizes to perform
raindrop removal tasks, resulting in inferior results. With the
emergence of various attention mechanisms, their adaptive
feature representation ability attracts considerable attention.
Quan et al. [3] introduce shape-driven attention and channel
recalibration techniques, leveraging mathematical modeling of
raindrops, to attain better raindrop-free images. To extract
more discriminative features for raindrop image restoration,
GAN-based methods have emerged. Typically, Qian et al. [2]
propose an attention-based generative adversarial network
that incorporates channel attention to model raindrop priors,
guiding the discriminator to maintain local consistency in the
restored areas. These two categories of methods demonstrate
favorable performance in raindrop removal with the support
of attention mechanisms. However, their network architectures
rely on plain convolutions, which limits their ability to char-
acterize image information within a fixed receptive field and
prevents them from effectively modeling long-range global
feature dependencies. To overcome this limitation, some meth-
ods [7] introduce Transformers (e.g., ViT [6] and SwinT [8])
as the fundamental components of network structure. This is
because their internal self-attention and cross-attention mech-
anisms excel at modeling nonlocal feature representations.

Although impressive results have been achieved in raindrop
removal, the sparse distribution of raindrops and various levels
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Fig. 1. Comparison of images before and after raindrop removal. (a) Input raindrop image. (b) Raindrop removal image generated by using DA-CLIP.
(c) Raindrop removal image generated by using MCW. (d) Uncertainty map generated from the raindrop image. (e) Raindrop removal image generated by
using our method. (f) Clean image. Our method performs superior raindrop removal results. It effectively removes raindrops and restores sharp background
details.

of degradation within raindrop regions are still not fully
considered as follows.

1) Globally, raindrops often exhibit unique sparse dis-
tribution in images, but the existing methods exhibit
a uniform treatment of pixels. The existing methods
frequently treat each pixel of the whole image equally,
resulting in the potential destruction of content in
raindrop-free regions and incomplete restoration of con-
tent in regions affected by raindrops.

2) Locally, the different degradation levels of raindrop
regions are not depicted, which are manifested as dif-
ferences in shape, size, and transparency, but fail to
effectively model them. The existing methods utilize
the attention mechanism to model the raindrop map,
considering it merely as a guide to facilitate the overall
network convergence, without explicitly addressing the
distinctions between individual local raindrop regions.

To address these issues, this article proposes an uncertainty-
aware sparse Transformer network (USTN), which effectively
removes raindrops and restores sharp background details in
images. Given the powerful capability of Transformers in
modeling long-range feature dependencies, we lean toward
leveraging Transformers to extract and learn image features.
However, considering the sparsity of raindrop distribution,
directly using standard Transformers [6], [8] may result in
capturing global information that includes redundant and irrel-
evant features. Therefore, we devise a sparse Transformer
backbone tailored to learn the sparse feature representation
of raindrop images. To be specific, we employ several sparse
Transformer blocks (STBs) inspired by [9] in each scale of this
backbone. In each STB, a top-k sparse attention (TSA) layer
is employed instead of the standard self-attention layer. This
enables the dynamic selection of the top-k highest scoring
attentions, facilitating the generation of the corresponding
sparse features for raindrop images.

Aiming at varying degrees of degradation in local raindrop
regions, we attempt to seek a tool to explicitly extract the
raindrop layer from the image. Benefit from image uncer-
tainty [10], [11], [12] can explicitly interpret the observation
that regions with more severe degradation exhibit higher
uncertainty, and we build an uncertainty-driven loss, which
forces the network to focus on raindrop region restoration.
For this, we also design two decoded branches, one for the

generation of the restored image and the other for the estima-
tion of the uncertainty map. In addition, to further enhance the
learning of sparse feature representation from raindrop images,
we incorporate pyramid feature refinement (PFR) modules
and residual channel–spatial attention (RCSA) modules into
the backbone. The former utilizes dilated convolutions with
varying dilation factors, in conjunction with shuffle attention
(SA) [13], to extensively extract local features across multi-
scale receptive fields. The latter utilizes channel attention [14]
and spatial attention [15] to emphasize informative features
in the deepest layer features, preventing them from being
overlooked. We conduct extensive experiments to validate the
effectiveness of the proposed USTN. As shown in Fig. 1, our
USTN outperforms the two latest methods (i.e., DA-CLIP [7]
and MCW [16]), performing superior raindrop removal results.
It effectively removes raindrops and restores sharp background
details. The main contributions of this article are as follows.

1) A USTN for image Deraindrop is introduced. It not
only captures global sparse representations of raindrop
images but models various local degradations in rain-
drop regions, restoring raindrop-free images with sharp
backgrounds.

2) We introduce the TSA to customize the sparse Trans-
former block and apply it to the feature learning
backbone. This effectively captures global sparse fea-
ture dependencies in raindrop images while suppressing
redundant and irrelevant representations.

3) We employ uncertainty to model the diverse degradation
of raindrop regions and build an uncertainty-driven
loss to encourage the network to focus more on the
restoration of raindrop regions. This effectively removes
raindrops and restores their backgrounds.

The rest of this article is organized as follows. Section II
summarizes the related works on Deraindrop methods and
uncertainty estimation. Section III elaborates on the network
architecture of the USTN and the loss functions. Section IV
presents the quantitative and qualitative comparison with the
SOTA methods and provides ablation analyses of each key
module. Section V concludes this work.

II. RELATED WORKS

In recent years, the research on single-image raindrop
removal has received more and more attention. In this article,
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we propose to use uncertainty estimation to assist the network
in removing raindrops. A brief review of the most related
works is as follows.

A. Single-Image Raindrop Removal

Raindrop removal is a formidable challenge due to the
complex and variable nature of raindrops. Based on the review
and collation of the available studies, it is evident that only
a few methods dedicated to single-image raindrop removal
have been proposed [1], [2], [3], [4], [17], [18], compared
with image restoration [19] and single-image rain streak
removal [20], [21], [22], [23]. However, numerous image
restoration works [7], [24], [25], [26], [27], [28], [29], [30] and
single-image rain streak removal works [16], [31], [32], [33]
offer empirical evidence of the effectiveness of their methods
in raindrop removal.

To overcome this challenge, numerous CNN-based frame-
works [3], [4], [16], [17], [26], [27], [28] have been developed
to solve single-image raindrop removal. To the best of our
knowledge, Eigen et al. [4] first propose the learning-based
method for raindrop removal, but the image quality generated
is poor due to the small network architecture. To accurately
locate raindrops, Quan et al. [3] utilize the shape characteris-
tics of raindrops to mathematically model raindrops, and they
propose using shape-driven attention and channel recalibration
to improve generated image quality. Furthermore, Li et al. [17]
observe that there would be dual-pixel disparities in raindrop
regions, but not in clean background regions. Based on this
observation, they propose the first dual-pixel raindrop removal
network. In addition, Chen et al. [28] propose TKLMR, a uni-
fied architecture that addresses image degradation caused
by diverse adverse weather conditions, including raindrops,
haze, and snow. In recent years, single-image rain streak
removal methods have become increasingly popular [34], [35],
[36], which, respectively, achieve superior image rain removal
performance by fully mining multiscale features [35] and
cross-scale relationship [36]. Moreover, several works attempt
to eliminate raindrops and rain streaks from single images
simultaneously [37], [38]. Furthermore, although not explicitly
focused on raindrop removal, numerous image restoration
works support their effectiveness with experimental evidence
of raindrop removal [24], [25], [26].

In recent years, GAN-based methods have been widely pop-
ular in the field of low-level computer vision, such as image
Deraindrop [1], [2], [18], waterdrop removal [39], and rain-like
layer removal [40]. Qian et al. [2] propose the combination
of generative adversarial network and attention mechanism
to generate raindrop-free images; more importantly, they also
release a real-world paired raindrop dataset, which greatly
facilitates the development of single-image raindrop removal
research. Yan and Loke [1] regard the single-image raindrop
removal as a many-to-one image-to-image translation task;
to the best of our knowledge, it is the first unsupervised
learning method that effectively alleviates the challenge of the
existing raindrop removal methods relying on paired raindrop
datasets. In addition, UnfairGAN [18] proposes an enhanced
generative adversarial network that can utilize prior high-level
information to improve Deraindrop performance.

Recently, another class of neural network architectures,
Transformers [5], [6], [7], [10], [29], [30], [32], has shown sig-
nificant performance gains in natural language and computer
vision tasks. The Transformer-based methods overcome the
limitations of CNNs (i.e., local receptive field). IDT [32] is an
effective and efficient Transformer-based framework for image
deraining that incorporates visual task priors. DA-CLIP [7]
transfers pretrained vision-language models to low-level vision
tasks as a universal framework for image restoration. UDR-
S2Former [10] is dedicated to restoring underlying clean
images from images both raindrops and rain streaks have dam-
aged. TransWeather [29] and GridFormer [30] are proposed
to restore images degraded by all adverse weather conditions.
The above methods all provide qualitative experimental results
on the Deraindrop dataset [2] to demonstrate its effectiveness
on single-image raindrop removal.

Although the works mentioned above demonstrate satisfac-
tory raindrop removal performance, they ignore the arbitrary
uncertainty in the input data. Specifically, the inherent noise
information of the training data has not been fully mined,
which limits their raindrop removal performance. Therefore,
this article attempts to estimate the arbitrary uncertainty in
raindrop images to guide the network to achieve better rain-
drop removal performance.

B. Uncertainty Estimation

At present, some works have studied the specific perfor-
mance of uncertainty in deep neural networks [12], [41],
[42], [43]. Kendall and Gal [12] divide uncertainty into two
categories: arbitrary uncertainty and epistemic uncertainty. The
former is related to the inherent noise of the training data, and
the latter is used to capture the parameter noise in the deep
neural network. When a large amount of data are available,
the epistemic uncertainty can be reduced.

In recent years, many computer vision tasks [11], [12],
[44], [45], [46] have introduced uncertainty estimation into
deep learning models, such as image super-resolution [44],
image defogging [11], face recognition [45], image classifi-
cation [46], and semantic segmentation [12]. Among them,
image super-resolution [44], image defogging [11], and face
recognition [45] model the arbitrary uncertainty in the input,
which is also the focus of this article. To reduce the impact of
inherent noise in the training data, Kendall and Gal [12] fix
a Gaussian likelihood to model the arbitrary uncertainty loss
function

L =
1
N

N∑
i=1

(
∥yi − f (xi )∥

2

2σ 2
i

+
1
2

log σ 2
i

)
. (1)

Here, f (xi ) and yi are the predicted value and ground truth for
pixel i , the variance σi of pixel i represents the noise scalar,
and N is the total number of pixels. Based on the formula,
we find that the value of the loss function can be adaptively
adjusted by the uncertainty of the network prediction.

For the sake of clarity, we refer to the first term of the
arbitrary uncertainty loss function as the residual term and the
second term as the regular term. We employ arbitrary uncer-
tainty estimation to assist the network in raindrop removal.
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Fig. 2. Workflow of the USTN. It consists of four key parts: (a) sparse Transformers-based backbone, (b) uncertainty estimator, (c) feature reconstructor,
and (d) dual constraints. The core module of the backbone, known as the STB, is depicted in (e). Among them, the loss constraints involved in (d) include
content loss Lc , uncertainty-driven loss LU , and perceptual loss Lp .

In the generated raindrop-free image, the penalty to the model
in areas with large prediction errors (high uncertainty) is
primarily governed by the regular term of the loss function.
Conversely, in areas with small prediction errors (low uncer-
tainty), the penalty to the model is mainly determined by the
residual term of the loss function. However, due to the small
prediction error in this region [it is more confident that they
are the correct prediction (GT)], the value of the residual term
will also be small.

III. METHODOLOGY

In this section, we begin by presenting an overview of the
proposed USTN. Subsequently, we delve into the network
architecture and each pivotal module. Finally, we elucidate the
formulation of the loss functions governing network training.

A. Overview

In this work, we propose a network for raindrop removal,
termed USTN. Given a raindrop image X ∈ RH×W×3, the
goal of USTN is to generate the corresponding clean image
Y ∈ RH×W×3 with sharp textures, devoid of raindrops.
As shown in Fig. 2, the USTN consists of four core parts:
a sparse Transformers-based backbone with a U-like structure
for encoding and decoding features, an uncertainty estimator
for predicting uncertainty maps, a feature reconstructor for
generating a clean image without raindrops, and dual con-
straints for optimizing the training process.

Specifically, the backbone comprises an encoder, two PFR
layers, four RCSA layers, and a decoder. We first utilize this
encoder to extract multiscale features F i

Enc = E(X ; 2E ),
where i ∈ {0, 1, 2} and 2E refers to the learnable parameters
of the encoder. Then, we plug a PFR layer into the deepest
STB, which is responsible for refining encoded features F2.

Similarly, the other PFR layer is symmetrically integrated
into the corresponding layer of the decoder. Positioned at the
lower end of this backbone, four RCSA layers are strategically
placed to promote the enhancement of discriminative fea-
tures for effective decoding, thus obtaining multiscale features
F i
Dec = D(x; 2D), where x represents the input of the decoder

and 2D refers to the learnable parameters of the decoder.
Subsequently, we introduce an uncertainty estimator U with
weights 2U and a feature reconstructor R with weights 2R

to predict uncertainty maps S and generate clean images
O, respectively. As depicted in Fig. 2, the U comprises
several Conv-ELU (exponential linear unit) blocks, while the
R consists of several Conv-ReLU (rectified linear unit) blocks.
To optimize the objective O → T , where T is ground truth,
we design dual output-specific constraints to facilitate the
training of the proposed USTN. In the forthcoming sections,
we delve into a detailed exposition of the core modules within
our USTN.

B. Sparse Transformers Block

Considering the natural sparsity of raindrop distributions in
images, we intend to employ the STB [9] as a fundamental
module for feature encoding and decoding. This preference
stems from that standard Transformers [6] introduce redundant
relations across all query–key pairs and irrelevant representa-
tions. As shown in Fig. 2(e), similar to [9], the STB includes
two residual steps. Given the encoded features F j−1

Enc at the
( j − 1)th scale, the current encoding of the STB can be
formulated as follows:

x′

j = x j−1 + TSA
(
LN
(
x j−1

))
x j = x′

j + CFFN
(
LN
(
x′

j

))
(2)
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where LN(·) denotes the layer normalization and CFFN(·)

denotes the cross feedforward network. x′

j is the output of the
first residual step. The TSA(·) represents the TSA layer, which
replaces the self-attention layer in the standard Transformers
and plays a pivotal role in modeling sparse correlations across
query–key pairs of tokens in images. The bottom of Fig. 2
shows the detailed schematics of TSA and CFFN.

1) TSA Layer: Taking the features F j−1
Enc with a dimension

of H/2 j−1
× W/2 j−1

× 2 j−1C as input of the current STB,
the TSA layer first splits these features into query Q, key K,
and value V with dimension of RL×d , L = H/2 j−1

×W/2 j−1.
The initial attention is obtained by

Att(Q, K, V) = Softmax

(
QK⊤

τ

)
V. (3)

Here, τ denotes temperature factor defined by τ = (d)1/2,
and d refers to feature channels. Subsequently, we introduce
an adaptive selection operation where the highest scoring
top-k elements are extracted from Att while discarding the
remaining elements, thus preserving strong correlations for
the query–key pairs. This dense-to-sparse attention selection
process can be formulated as follows:

TSA(Q, K, V) = Softmax
(

Tk

(
QKT

τ

))
V (4)

where Tk(·) denotes top-k selection operation, which is
dynamically learnable. Specifically, the top-k attention can be
defined by

[Tk(A)]i j =

{
Ai j , Ai j ≥ si ,

0, otherwise.
(5)

Here, si denotes the kth largest value in the j th row of
(QKT /τ). Any element Ai j that does not satisfy Ai j ≥ si

is set to zero. Then, the sparse attention [Tk(A)] is utilized
to recalibrate V, resulting in enhanced features x′

j at the j th
scale as (2).

2) Cross Feedforward Network: At the second residual step,
given features LN(x′

j ) after layer normalization, we send them
into a parallel structure composed of 3×3 and 5×5 depthwise
convolutions [47] for local information extraction. In this way,
the local feature extraction can be formulated as follows:

xm
j = Conv1×1

(
LN
(
x′

j

))
xm−t1

j = δ
(
DWConv3×3

(
xm

j

))
xm−b1

j = δ
(
DWConv5×5

(
xm

j

))
xm−t2

j = δ
(

DWConv3×3

[
xm−t1

j , xm−b1
j

])
xm−b2

j = δ
(

DWConv5×5

[
xm−b1

j , xm−t1
j

])
x j = Conv1×1

[
xm−t2

j , xm−b2
j

]
+ x′

j (6)

where δ(·) is a ReLU, Conv1×1 represents 1 × 1 convolution,
DWConv3×3 and DWConv5×5 refer to 3 × 3 and 5 × 5 depth-
wise convolutions, respectively, and [·] is concatenation.

Fig. 3. Workflow of the PFR module. Note that the SA layer [13] enhances
the feature representation ability of the CNN network by grouping features
in the channel dimension and processing them in parallel.

Fig. 4. Workflow of the RCSA module. It optimizes feature representation by
using channel attention and spatial attention to process the extracted features.

C. Pyramid Feature Refinement

To further refine the features encoded through STBs, PFR
modules are embedded after the highest level STBs in both
the encoder and decoder, as shown in Fig. 2. The detailed
structure of the PFR is depicted in Fig. 3. The PFR is a par-
allel module composed of dilated convolutions with different
dilation coefficients and SA layers attention mechanism [13].
As we all know, dilated convolution can improve the global
representation of features by expanding the receptive field,
but its essence is still convolution to extract local features
within the receptive field. Also, different dilation coefficients
are set for the dilated convolution, which also plays a sparse
selection effect to a certain extent. The SA layers attention
mechanism [13] groups features in the channel dimension and
processes the grouped features in parallel, thereby enhancing
the ability of the network to model local information. Note
that the PFR does not change the size of the features, so it
has good migration capabilities and is a plug-and-play mod-
ule. As mentioned above, the entire PFR feature extraction
operation process can be formulated as follows:

xd
j = S A

(
δ
(
BN

(
DConvd

3×3

(
x j
))))

x̂ j = Conv1×1
([

xd
j

])
+ x j (7)

where S A(·) represents the SA layers attention mechanism,
δ(·) represents ReLU activation, BN(·) represents batch nor-
malization [48], Conv1×1 represents 1 × 1 convolution, and
DConvd

3×3 refers to the dilated convolution with a kernel size
of 3 × 3 and a dilation coefficient of d. Note that the value
range of d is [0, 1, 2, 3].

D. Residual Channel–Spatial Attention

At the bottom of this network, we embed 4 RCSA modules.
Their structure is shown in Fig. 4, The module has two key
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components, i.e., channel attention (Attc) [14] and spatial
attention (Atts) [15]. The intermediate features are refined
through the RCSA. Therefore, it is used to assist the PFR
module in further processing the extracted features to ensure
effective representation of useful features in the deepest layers
of the network. Given features x̂ j=2 with a dimension of
H/4 × W/4 × 4C , the RCSA can be formulated as follows:

x̄ = Conv3×3
(
δ
(
Conv3×3

(
x̂ j=2

)))
x̄c = Attc

(
x̄
)
⊗ x̄

x̄s = Atts
(
x̄c
)
⊗ x̄c

xout = x̄s + x̂ j=2. (8)

Here, Conv3×3 represents 3 × 3 convolution, δ(·) denotes a
ReLU activation, and ⊗ represents elementwise multiplica-
tion. Attc and Atts present the channel and spatial attention,
respectively, and they are formulated as follows:

Attc
(
x̄
)

= σ
(
MLP

(
AP
(
x̄
))

+ MLP
(
MP

(
x̄
)))

Atts
(
x̄c
)

= σ
(
Conv7×7

[
AP
(
x̄c
)
, MP

(
x̄c
)])

. (9)

where σ(·) denotes the sigmoid function and Conv7×7 denotes
7×7 convolution. AP(·) and MP(·) denote the average pooling
and max pooling operations, respectively. [·] is concatenation,
and MLP(·) represents a multilayer perceptron.

E. Uncertainty Estimator

The existing methods for raindrop removal apply uniform
constraints to raindrop regions, disregarding the inherent vari-
ations in shape, position, size, transparency, and distribution
of raindrops. This limitation results in suboptimal restoration
performance. To tackle this challenge, we aim to develop a
discriminative method that effectively distinguishes and treats
raindrop regions exhibiting diverse levels of degradation. Moti-
vated by the uncertainty estimation [12], which indicates that
regions with greater degradation in an image exhibit higher
levels of uncertainty, we construct an uncertainty estimator
U [as shown in Fig. 2(b)] to predict an uncertainty map
S ∈ RH×W×3 for representing the degradation information of
each pixel given a raindrop image X ∈ RH×W×3. Specifically,
the uncertainty estimator is composed of 3 Conv-ELU blocks.
Given the output features F2

Dec of the backbone [Fig. 2(a)],
the estimation of uncertainty map is formulated as follows:

S = U
(
F2
Dec; 2U

)
+ X (10)

where 2U represents the weights of the uncertainty estimator.
Subsequently, a key of this work is to leverage the esti-

mated uncertainty map to constrain the network in generating
raindrop-free images. We assume that the Deraindrop image
Ŷ follows a Gaussian distribution, and we define a likelihood
function as follows:

p
(
Y|Ŷ

)
= N

(
Ŷ, σ 2) (11)

where the mean of the Gaussian distribution N is generated
raindrop-free image Ŷ , Y represents its corresponding ground
truth, and σ 2 is the observation noise. To model arbitrary

Fig. 5. Raindrop images and their corresponding uncertainty maps. The
top row shows raindrop images, and the bottom row shows their uncertainty
maps. These uncertainty maps depict the sparsity of raindrop distribution and
different degrees of degradation within raindrop regions, i.e., the variations in
shape, size, and transparency.

uncertainty, [12] introduces pixel-specific observation noise σi .
We follow [12] and specify the likelihood function as follows:

p
(
Yi |Ŷ i

)
=

1
√

2πσi
exp

((
Yi − Ŷ i

)2

2σ 2
i

)
(12)

where Ŷi and Yi are the predicted value and ground truth for
pixel i and the variance σi of pixel i represents the noise scalar.
We take the negative logarithm of the likelihood function as
follows:

−ln P
(
Yi |Ŷ i

)
=

(
Yi − Ŷ i

)2

2σ 2
i

+
1
2

lnσ 2
i + ln

√
2π. (13)

For numerical stability, we train the network to learn the
logarithmic variance Si = lnσ 2

i . We assume that N is
the total number of pixels. Finally, we simplify and mini-
mize the negative log-likelihood function to obtain the final
uncertainty-driven loss function by

LU =
1

2N

N∑
i=1

(
exp(−Si )∥Yi − Ŷ i∥

2
+ Si

)
. (14)

The first term is the residual term, and the second term
represents the regular term.

We argue that uncertainty estimation can facilitate the
network to better focus on raindrop degradation regions. Here,
we attempt to explain the uncertainty-driven loss for the
raindrop removal task. Observing the uncertainty maps in
Fig. 5, we find that the more severe the degradation, the higher
the uncertainty value. For regions with severe degradation,
the residual term in (14) can be ignored, and the loss is
mainly controlled by the regular term. Conversely, in regions
with a lower uncertainty value, indicating a milder level of
degradation, the uncertainty-driven loss is primarily governed
by its residual term. Hence, the uncertainty-driven loss can
dynamically adjust the penalty imposed by the loss function
on the network based on the degree of image degradation.

F. Overall Losses

As shown in Fig. 2, the overall objective function consists
of three parts: content loss Lc, uncertainty-driven loss LU ,
and perceptual loss Lp. We multiply each loss function by its
corresponding weight to obtain the final loss function of the
network as follows:

Lover = λcLc + λpLp + λULU (15)
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where weight coefficients λc and λU are set to 1.0 and
λp is set to 0.1. Given raindrop removal images ŶN

k=1 and
corresponding clean images YN

k=1, the content loss Lc is
calculated by employing the L-1 norm, which quantifies the
pixelwise disparities between the Deraindrop image Ŷk and
the ground truth Yk . It is defined as follows:

Lc =
1
N

N∑
k=1

∥Ŷk − Yk∥1. (16)

Note that, we use the VGG-19 [49] pretrained by the ImageNet
dataset to calculate the perceptual loss at the feature level,
which is defined as follows:

Lp =
1

C H W
∥8i

(
Ŷk
)
− 8i (Yk)∥2 (17)

where C , H , and W are the number of channels, height, and
width of feature maps. 8i represents the i th layer of the VGG-
19 model. The uncertainty-driven loss is defined by (14).

IV. EXPERIMENTS

A. Dataset

To demonstrate the effectiveness of the proposed method,
we evaluate the raindrop removal results on the Deraindrop
dataset [2]. The Deraindrop dataset is obtained by taking
photographs before/after spraying water on the glass and
contains 1110 image pairs. The dataset consists of three parts:
training set (861 image pairs), testA (58 image pairs), and
testB (249 image pairs), where testA is a subset of testB.
Following the same strategy as [2], we use 861 image pairs
for training and testA for testing.

B. Evaluation Metrics

We utilize reference-based evaluation metrics (SSIM,
PSNR, FID, LPIPS, and FSIM) and nonreference metrics
(NIQE, PIQE, and BRISQUE) to evaluate the performance
of our method on the image raindrop removal task.

1) Reference-Based Metrics: We utilize PSNR, SSIM, FID,
LPIPS, and FSIM to evaluate the performance of our method.
The details of these reference-based metrics are described
below.

1) Peak signal-to-noise ratio (PSNR) [50] mainly measures
the proximity of the corresponding pixels between the
generated image x and the reference image y. The higher
its value, the higher the quality of the generated image.
PSNR-L denotes the PSNR on the Y channel in the
YCbCr space

PSNR(x, y) = 10 log10

[
2552/M SE(x, y)

]
. (18)

2) Structural similarity index (SSIM) [51] measures the
similarity between the generated image x and its refer-
ence image y from three aspects of luminance, contrast,
and structure, and its value range is [0,1]. Similar to the
above PSNR, a higher value indicates a higher quality
image

SSIM(x, y)=

(
2µxµy + c1

µ2
x + µ2

y + c1

)(
2σxy + c2

σ 2
x + σ 2

y + c2

)
(19)

where µx and µy are the mean values of images x and
y. σ 2

x and σ 2
y are the variances of images x and y.

c1 and c2 are two constant positive values that are used
to prevent numerical instability.

3) Fréchet inception distance (FID) [52] aims to measure
the difference between generated and real image distri-
butions. A lower FID value indicates that the generated
image is closer to the real image distribution.

4) Learned perceptual image patch similarity (LPIPS) [53]
is used to measure the perceptual similarity between two
images. A lower value indicates a higher quality image.

5) Feature similarity index measure (FSIM) [54] is a variant
of SSIM that considers not all pixels in an image have
the same importance. The higher the value, the better
the image quality.

2) Nonreference Metrics: We utilize NIQE, PIQE, and
BRISQUE to evaluate the performance of our method. The
details of these nonreference metrics are described below.

1) Natural image quality evaluator (NIQE) [55] measures
deviations from statistical regularities observed in nat-
ural images. The lower the value, the better the image
quality.

2) Perceptual-based image quality evaluator (PIQE) [56]
performs block-level analysis to assess image distortion,
with lower values indicating higher image quality.

3) Blind/referenceless image spatial quality evaluator
(BRISQUE) [57] measures image quality by fitting
image coefficients to a Gaussian distribution and using
SVM for evaluation. The lower the value, the better the
image quality.

C. Implementation Details

The proposed method is implemented on the PyTorch
framework. The whole training process takes 300 epochs
and requires an NVIDIA RTX2080Ti GPU. We use Adam
optimizer [58] (β1 = 0.5 and β2 = 0.999) to optimize the
model with an initial rate of 1×10

−4
. After the first 150 epochs,

we linearly decay the rate to zero over the next 150 epochs.
The batch size is set to 1, and the patch size is set to 256.

D. Comparison With State-of-the-Art Methods

1) Quantitative Comparison: We quantitatively compare
our method with the existing state-of-the-art methods on
the above nine evaluation metrics. As shown in Table I,
it is clear that our method outperforms other state-of-the-
art methods on PSNR-L, PSNR, FSIM, FID, LPIPS, and
BRISQUE. It demonstrates that images generated using our
method have better restoration performance regarding image
perceptual quality and naturalness. In addition, our method
ranks second in raindrop removal performance in terms of
SSIM and PIQE. Although DuRN [26] achieves the best
performance on SSIM, AttenGAN [2] performs best on NIQE,
and DA-CLIP [7] demonstrates superior performance in PIQE;
they significantly lag behind our method in other metrics.

2) Qualitative Comparison: We implement a qualitative
comparison of various raindrop removal methods on the
Deraindrop dataset [2]. We show two sets of images to
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TABLE I
QUANTITATIVE RAINDROP REMOVAL RESULTS. ↑/↓ FOR A METRIC DENOTES THAT A HIGHER/LOWER VALUE IS BETTER. THE BEST RESULTS ARE

BOLDED, AND THE SECOND BEST RESULTS ARE HIGHLIGHTED IN UNDERLINE

Fig. 6. Qualitative comparisons on the Deraindrop dataset [2]. The raindrop removal results by our method can protect the original edge details and textures
in the image to a greater extent while removing raindrops. (a) Input. (b) AttenGAN [2]. (c) Quan’s [3]. (d) DuRN [26]. (e) BPP [27]. (f) TKLMR [28].
(g) MCW [16]. (h) DA-CLIP [7]. (i) Ours. (j) GT.

intuitively demonstrate that the USTN has a more effective
and robust raindrop removal performance. As shown in Fig. 6,
it is clear that our method can protect the original edge details
and textures in the image while removing raindrops. In Fig. 7,
we demonstrate the advantages of our approach by magnifying
the local region of the image. In addition, by visualizing the
pixel distribution of a certain column in the generated image,
we can more intuitively highlight that our method can achieve
better rain removal effects.

E. High-Level Task Application

Deep learning-based methods [59], [60], [61], [62], [63]
have demonstrated superior performance in recent years.
However, images are usually disturbed by various factors
(such as raindrops), so these data-based methods cannot be
effectively applied to real-world environments. Considering
the negative impact of raindrop occlusion on semantic seg-
mentation, we obtain the semantic segmentation results of

generated images based on the Segmenter [64] pretrained
on the ADE20K dataset. We propose that the performance
of raindrop removal methods can be evaluated from the
perspective of semantic segmentation. We perform semantic
segmentation on testA of the Deraindrop dataset, as shown in
Fig. 8. Compared with the existing state-of-the-art methods,
we can intuitively observe that the semantic segmentation
results of Fig. 8(i) and (j) are the most similar. Therefore,
we conclude that the images generated by our method achieve
better semantic segmentation results.

F. Efficiency Analysis

To more comprehensively evaluate the model performance
of our method, we analyze the efficiency of our method
compared with the existing state-of-the-art methods. Specif-
ically, we measure the model parameters and inference time,
comparing them with the existing state-of-the-art methods.
As shown in Table II, our method does not achieve the fewest
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Fig. 7. Qualitative comparisons on the Deraindrop dataset [2]. The raindrop removal images generated by the existing state-of-the-art methods are shown.
We visualize the pixel distribution of the generated images in a column marked with blue lines. (a) Input. (b) AttenGAN [2]. (c) Quan’s [3]. (d) DuRN [26].
(e) BPP [27]. (f) TKLMR [28]. (g) MCW [16]. (h) DA-CLIP [7]. (i) Ours. (j) GT.

Fig. 8. Semantic segmentation results obtained before and after raindrop removal based on pretrained Segmenter [64]. The raindrop removal results by our
method achieve better semantic segmentation results. (a) Input. (b) AttenGAN [2]. (c) Quan’s [3]. (d) DuRN [26]. (e) BPP [27]. (f) TKLMR [28]. (g) MCW
[16]. (h) DA-CLIP [7]. (i) Ours. (j) GT.

model parameters and least inference time. The main reason is
that our network involves Transformer blocks, known to have
large model parameters and high computational resource con-
sumption. Nevertheless, our network parameters and inference
time are still significantly lower than TKLMR [28] and DA-
CLIP [7]. Through comprehensive analysis of the experimental
results in Tables I and II, it can be proved that, although our
method does not achieve the fewest model parameters and least
inference time, our method outperforms the existing state-of-

the-art methods in image generation quality and achieves the
optimal raindrop removal performance. Overall, our method
has advantages in the field of raindrop removal.

G. Ablation Studies

1) Effectiveness of PFR: To evaluate the effectiveness
of PFR-1 and PFR-2, we design three model architectures.
As shown in “M-1,” “M-2,” and “M-3” in Table III, when
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Fig. 9. Effectiveness of PFR module. (a) Input image. (b) Ground truth. (c) Without PFR-1 and PFR-2 modules. (d) Without PFR-1 module. (e) Without
PFR-2 module. (f) With PFR-1 and PFR-2 modules. The PFR module effectively models the global and local features of images.

TABLE II
EFFICIENCY ANALYSIS OF THE EXISTING RAINDROP REMOVAL METHODS.

THE BEST RESULTS ARE BOLDED, AND THE SECOND BEST RESULTS
ARE HIGHLIGHTED IN UNDERLINE

TABLE III
ABLATION STUDY FOR DIFFERENT VARIANTS OF OUR USTN ON THE

DERAINDROP DATASET [2]. PFR-1, PFR-2, TSA, AND LU DENOTE
THE FIRST PFR OF USTN, THE SECOND PFR OF USTN, THE

TSA LAYER, AND THE UNCERTAINTY-DRIVEN LOSS, RESPEC-
TIVELY. THE BEST RESULTS ARE BOLDED

TABLE IV
ABLATION STUDY FOR THE NUMBER OF STBS IN OUR METHOD ON THE

DERAINDROP DATASET [2]. STB-1, STB-2, AND STB-4 DENOTE STB
IN 1, 1/2, AND 1/4 SCALES. THE BEST RESULTS ARE BOLDED

PFR-1 and PFR-2 are removed, PSNR-L and PSNR decrease
by 1.98 and 0.81 dB, respectively. When only PFR-1 is
removed, PSNR-L and PSNR decrease by 0.34 and 0.27 dB,
respectively. When only PFR-2 is removed, PSNR-L decreases
by 0.32 dB. As shown in Fig. 9, we visualize the features of
the input image before and after being processed by PFR-1
and PFR-2. The comparison between Fig. 9(c) and (d) demon-
strates the effective extraction of local and global features by
PFR-1, including building edges and leaf textures. A compar-
ison of Fig. 9(e) and (f) reveals that PFR-2 further extracts
detailed information from the image. The above experimental

Fig. 10. Ablation analysis of TSA in STB. (a) Input image. (b) Without
the TSA layer. (c) With the TSA layer. (d) Ground truth. The TSA layer can
effectively reduce artifacts and restore high-quality background images.

Fig. 11. Ablation analysis of uncertainty-driven loss LU . (a) Input image.
(b) Without LU . (c) With LU . (d) Ground truth. Using LU contributes to
effectively removing raindrops and reconstructing clear background structures.

results demonstrate that PFR effectively models the global and
local features of images.

2) Effectiveness of the TSA: We investigate the effective-
ness of the TSA by replacing TSA with the self-attention
layer in the standard Transformers. Comparing the quan-
titative results for “M-4” with ours in Table III, we find
that the lack of TSA results in the raindrop removal perfor-
mance of the network decreasing (e.g., PSNR-L decreased
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Fig. 12. Effectiveness of the number of STBs. (a) Input image. (b) “M-6” represents that the number of STB-1/2/4 is 1. (c) “M-7” represents that the
number of STB-1/2/4 is 2. (d) Number of STB-1/2/4 is 3. (e) Ground truth. With the number of STBs increasing, the raindrop removal performance of USTN
consistently improves.

by 0.32 dB). Comparing (b) and (c) in Fig. 10, when using
the self-attention layer in the standard Transformers instead
of TSA, we observe a significant decrease in the capability
to restore the area heavily damaged by raindrops. The exper-
imental results above demonstrate that TSA is better suited
for modeling raindrop images due to their sparsity, and it
significantly improves the raindrop removal capabilities of the
network.

3) Effectiveness of Uncertainty-Driven Loss: To investigate
the impact of uncertainty-driven loss, we exclude it and
continue to utilize the Deraindrop dataset [2] for network
training. Upon comparing the quantitative results for “M-5”
with ours in Table III, we observe significant performance
enhancements attributable to the uncertainty-driven loss in
our network. Specifically, we note a 0.54-dB improvement in
PSNR-L and a 0.51-dB improvement in PSNR. As depicted
in Fig. 11(b), the absence of uncertainty-driven loss results in
a diminished restoration effect on the edges and textures. This
observation implicitly validates the adaptive raindrop removal
capability facilitated by the uncertainty-driven loss.

4) Effect of the Number of STBs: To investigate the influ-
ence of the number of STBs on raindrop removal, we vary
the number of STBs across different scales. As presented
in Table IV, we implement “M-6” and “M-7” and compare
them with our approach. The table data demonstrate that the
PSNR-L, SSIM, and PSNR increase as the number of STBs
increases. For instance, “M-7” exhibits a 0.28-dB improvement
in PSNR-L compared with “M-6,” while our method shows a
0.28-dB improvement in PSNR-L compared with “M-7.” The
qualitative comparison results are depicted in Fig. 12(b)–(d).
Notably, in (b), with the network structure being “M-6,” the
restoration effect of heavy rain regions in the input image is
notably poor, and raindrops persist in the generated image.
(c) demonstrates that with the network structure being “M-7,”
the remaining raindrops in the generated image are substan-
tially reduced, and (d) represents the generated image obtained
using our final network structure. Fig. 12 clearly illustrates that
as the number of STBs increases, the restoration effect of the
areas affected by raindrops consistently improves.

V. CONCLUSION

This article presents an uncertainty-aware sparse Trans-
former network called USTN for image Deraindrop. During
training, USTN utilizes uncertainty estimation to adaptively
adjust the degree of penalty to the network according to
the degree of raindrop degradation, improving the restoration

quality in uncertain areas. In addition, we introduce sparse
Transformer blocks into USTN. This module replaces the
self-attention layer in the standard Transformers with the TSA
layer, which can retain the most useful attention values for
modeling global features. The experimental results illustrate
that the proposed method outperforms other state-of-the-art
methods by effectively preserving original image features
while removing raindrops. This characteristic enhances its
applicability in real-world scenarios.
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