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A B S T R A C T

Poor light conditions constrain the high pursuit of clarity and visible quality of photography especially
smartphone devices. Admittedly, existing specific image processing methods, whether super-resolution methods
or low-light enhancement methods, can hardly simultaneously enhance the resolution and brightness of
low-light images at the same time. This paper dedicates a specialized enhancer with a dual-path modulated-
interactive structure to recover high-quality sharp images in conditions of near absence of light, dubbed
CollaBA, which learns the direct mapping from low-resolution dark-light images to their high-resolution
normal sharp version. Specifically, we construct the generative modulation prior, serving as illuminance
attention information, to regulate the exposure level of the neighborhood range. In addition, we construct
an interactive degradation removal branch that progressively embeds the generated intrinsic prior to recover
high-frequency detail and contrast at the feature level. We also introduce a multi-substrate up-scaler to
integrate multi-scale sampling features, effectively addressing artifact-related problems. Rather than adopting
the naive time-consuming learning strategy, we design a novel bi-level implicit adversarial learning mechanism
as our fast training strategy. Extensive experiments on benchmark datasets — demonstrate our model’s wide-
ranging applicability in various ultra-low-light scenarios, across 8 key performance metrics with significant
improvements, notably achieving a 35.8% improvement in LPIPS and a 23.1% increase in RMSE. The code
will be available at https://github.com/moriyaya/CollaBA.
1. Introduction

Image Super-Resolution (SR) remains a fundamental challenge with
in the realm of low-level computer vision, finding extensive applica-
tions across domains such as surveillance, high resolution imaging, and
autonomous driving [1,2]. However, contemporary research primarily
centers on super-resolving images captured under standard lighting
conditions, leaving a noticeable void in the investigation of super-
resolution techniques for images acquired in low-light settings [3,4].
Nevertheless, the enhancement of low-resolution images procured un-
der extremely low illumination levels, with the objectives of luminance
adjustment, detail magnification, and the ultimate generation of high-
resolution, visually coherent images, holds paramount significance in
practical applications [5,6]. This research endeavors to address this
formidable challenge, with the overarching goal of elevating image
quality in low-light environments.
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In contrast to well-illuminated environments, the process of super-
resolution when applied to low-light imagery may exacerbate a multi-
tude of challenges, encompassing the amplification of artifacts, noise,
uneven exposure, color aberrations, as well as the transformation of
coarse and distorted textures [7,8]. Images captured in dimly lit sce-
narios are often influenced by highly erratic illumination distributions,
which can potentially yield conspicuous shadows and highlight regions,
thereby intensifying the intricacy of super-resolution tasks [9,10]. Fur-
thermore, the act of capturing images in low-light conditions introduces
additional complexities, such as diminished contrast, detail loss, and
color deviations, collectively elevating the intricacy of super-resolution
endeavors. Hence, it is imperative that, throughout the course of super-
resolution processing, precise control over the exposure levels of input
images is exercised to accommodate variations in illumination across
different regions. This is paramount for ensuring that the resulting
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Fig. 1. Illustrating three different network architectures for low-light imagery super-resolution, including the (a) conventional normal-light Super-Resolution method (Normal-light
SR), (b) cascaded Low-Light Enhancement (LLE) and SR method (LLE↦SR), and (c) our proposed dual-path modulated-interactive enhancer CollaBA.
Fig. 2. Illustrating comparison results among normal-light SR, LLE↦SR, and our proposed method. Upon zooming in on specific regions, our enhanced images exhibit appropriate,
realistic colors and rich textures compared to other methods. Simultaneously, we presented quantitative results for 9 representative state-of-the-art methods under 7 different
metrics. Our method consistently demonstrated exceptional performance.
high-resolution imagery not only retains sharp details but also pre-
serves a balanced perception of illumination. Moreover, given the
propensity for missing details in images captured under low-light con-
ditions, meticulous handling is warranted during the super-resolution
process to avert the generation of erroneous artifacts and halos, which
have the potential to compromise the quality and utility of the fi-
nal output. Recently, several methods addressing this combined issue
have been proposed, yet they fall short of achieving the desired en-
hancement outcomes [4,11]. Notably, these approaches often depend
on synthetic datasets crafted by manually adjusting brightness levels,
such as through gamma correction, aiming for luminance enhancement
and super-resolution [4]. This leads to an ineffective generalization
to real-world nighttime scenes, with issues like color distortions and
artifacts.

Two direct approaches exist to tackle this complex task, as depicted
in Fig. 1. The first method entails directly applying SR techniques
intended for typical lighting conditions, denoted as normal-light SR.
The second approach involves a cascaded combination of Low-Light
Enhancement (LLE) and normal-light image SR methods, denoted as
LLE↦SR, executed sequentially to achieve both brightness adjustment
and resolution enhancement. Nevertheless, extensive experiments have
shown that solely using these task-specific models results in noticeable
constraints and a decline in performance. As illustrated in Fig. 2,
we have chosen two state-of-the-art LLE methods, SCI [12] and LL-
Former [2], along with the latest image SR methods, HAT [13] and
SRFormer [14], as examples for visual result comparisons. Upon closer
scrutiny, it becomes apparent that using HAT and SRFormer indepen-
dently fails to recover fine details in low-light input images, leading
to significant color discrepancies and the presence of artifacts. Simi-
larly, the cascaded LLE↦SR methods (e.g., SCI↦HAT, LLFormer↦HAT)
struggle to restore natural brightness and exhibit noticeable color dis-
tortions and texture loss. In contrast, our approach demonstrates a
substantial performance advantage, yielding results with more natural
and realistic colors, as well as improved structural details. Furthermore,
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in the right-hand side of Fig. 2, we present a numerical score com-
parison between our method and eight state-of-the-art methods across
seven evaluation metrics. It can be observed that our method achieves
a significant performance advantage compared to the second-ranked
method (i.e., Restormer [15]), with a notable 35.8% improvement in
terms of LPIPS and a 0.4 dB improvement in terms of PSNR. For ad-
ditional comparative analysis results, please refer to the Experimental
Section.

In more detail, we address the above challenges with a well-
designed enhancer to simultaneously enhance brightness and reso-
lution, dubbed CollaBA, which learns the direct mapping from low-
resolution dark-light image to their high-resolution normal sharp ver-
sion. Our core network consists of a dual-path modulated-interactive
enhancer, including an interactive degradation removal module and
a generative modulation prior module. The former aggregates multi-
scale interactive feature flow for generating finer textures. The latter
generates learnable illumination attention with the illumination prior
loss, which is then embedded into subsequent degradation removal
module to modulate the exposure level, through a channel-decoupling
spatial transform as an intermediate bridge. Additionally, we propose
a multi-substrate compositive up-sampling approach, effectively alle-
viating the issue of artifacts. From an algorithm-level perspective, we
introduce the bi-level implicit adversarial learning strategy based on
bi-level optimization to further improve the visualization performance
while ensuring the stability of training. In summary, our contributions
are fourfold:

• We present CollaBA, a specialized dual-path modulated-interactive
enhancer, as a fresh approach to tackling the intricate challenge
of collaborating amplification and brightening images taken in
extremely low-light conditions. This marks our innovative ex-
ploration into the joint task’s intricacies and the validation of
practical solution strategies.
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• Our CollaBA gains remarkable performance by imposing genera-
tive modulation priors to guide exposure regulation, progressively
integrating them into the multi-scale degradation removal branch
through spatial feature transformation.

• Instead of naive time-consuming adversarial learning strategy, a
novel bi-level implicit adversarial learning mechanism inspired
by hierarchical optimization is designed, combined with outer
product approximation operation as a fast training strategy, effec-
tively improving the stability of training and the quality of visual
perception.

• Extensive quantitative and qualitative experiments were con-
ducted to thoroughly validate that our method surpasses existing
state-of-the-art approaches on real-world benchmark datasets,
particularly in extremely low-light conditions, achieving a 35.8%
improvement in LPIPS and a 23.1% increase in RMSE.

2. Related work

2.1. Low-light image enhancement

LLE strives to brighten dimly lit images. Early techniques, like
the Retinex model [16,17], relied on handcrafted solutions, which
often struggled with preserving details and colors, resulting in artifacts
or loss of information [18]. In recent years, data-driven approaches
have marked substantial progress, with current focus largely on both
supervised [19,20] and unsupervised methods [3,12]. For instance,
Yang et al. [21] proposed a recursive ribbon network and trained
it using a semi-supervised strategy. Li et al. [22] focused on esti-
mating curves specific to each low-image for brightness adjustment,
integrating multiple prior-related losses (i.e., exposure, brightness, and
color losses) to preserve the integrity of tones. A more lightweight
and robust unsupervised method was introduced in [12], which em-
ploys a basic illuminance learning module during the inference phase
to further enhance the generalization capability for low-light scenes.
Most recently, there has been growing interest in leveraging simulated
degradation to enhance image restoration capabilities. Jiang et al. [20]
developed the degradation-to-refinement generation network, focusing
on intrinsic degradation understanding and naturalness preservation.
Wang et al. [19] utilized raw degradation priors to guide deep restora-
tion models, building a prompting degradation perception modulator
for adaptive image restoration learning. In practice, the most straight-
forward strategy entails integrating an upsampling operation within a
low-light processing framework. Yet, this approach frequently results
in complications such as blurriness, diminished brightness, and loss of
texture clarity. Therefore, it becomes imperative to investigate tech-
niques that elevate the resolution of low-light scenes by focusing on
feature-level enhancements.

2.2. Image super-resolution

Super-resolution, in its general sense, entails generating high-resol
ution imagery from their lower-resolution counterparts, usually con-
ducted under normal lighting environments. Recent focus has primar-
ily been on model-based approaches [23,24] and data-driven strate-
gies [25,26]. For instance, Li et al. [27] leveraged a feedback mech-
anism to refine low-level representations with high-level information
step by step, resulting in a strong early reconstruction ability. Jiang
et al. [25] presented a hierarchical dense network for efficient image
super-resolution, offering improved performance with reduced com-
plexity. The work in [28] derived a top-k token selective transformer
that eliminated irrelevant tokens, integrated multi-scale features, and
utilized global context attention for high-frequency texture detail gen-
eration. Liang et al. [29] constructed transformer based network ar-
chitecture for high-quality image reconstruction, where features are
fused to preserve low-frequency information and enhance feature ag-
3

gregation. Zamir et al. [30] proposed a multi-scale image restoration
architecture with a non-local attention mechanism and attention-based
multi-scale feature aggregation. Zhou et al. [14] introduced permuted
self-attention to balance channel and spatial information, improving
super-resolution model performance with less computational burden.
Chen et al. [13] combined channel attention and window-based self-
attention schemes to fully exploit the potential of Transformer networks
in low-level vision tasks, achieving a balance between performance and
efficiency. More recently, Cao et al. [24] presented CiaoSR, which uses
implicit and scale-aware attention for super-resolution, effectively han-
dling arbitrary-scale inputs. Li et al. [26] proposed leveraging dynamic
local and global self-attention for image super-resolution, integrating
transformer-inspired elements with minimal computational require-
ments. However, it is worth noting that conventional super-resolution
methods designed for normal lighting conditions often fall short in
addressing the unique challenges presented by low-light environments.
Consequently, they tend to produce sub-optimal results characterized
by low brightness, increased artifact presence, and blurred textures.
Therefore, this paper employs specialized domain knowledge, espe-
cially in understanding ultra-dark environments, to devise a custom bi-
level adversarial learning strategy aimed at generating high-frequency,
fine-grained texture details, specifically designed for these joint tasks.

3. The proposed method

In this section, we will provide a comprehensive overview of our
proposed CollaBA, including the designed network architecture, the
objective functions, and the learning strategies.

3.1. Overview of CollaBA

Given a low-light, low-resolution input image 𝐱 suffering from an
unknown degradation, our joint task aims to estimate a high-quality
normal-light, super-resolution image �̃�. The goal is to make �̃� as close
as possible to its ground-truth counterpart 𝐲, which is of normal-light
and high-resolution, in terms of realism and fidelity.

As depicted in Fig. 3, our CollaBA is meticulously designed as an
enhancer utilizing a dual-path modulated-interactive structure. It pri-
marily comprises a Generative Modulation Prior (GMP) module and a
multi-scale Interactive Degradation Removal (IDR) module for refining
context. These modules are connected through conditional illumination
modulation using spatial feature transformations. The IDR module is
specifically designed to eliminate complex degradations across multiple
spatial scales, ensuring the preservation of intricate high-frequency de-
tails. By imposing a generative color prior as modulation information,
we introduce the illuminance prior loss as prior constraint to regulate
the exposure level. In this regard, the intensity of illumination map
is obtained through the Unet-style network and its latent features are
extracted. These features provide rich color and content information for
interactive guidance, which are then aggregated into multi-scale degra-
dation removal modules through spatial transformation operations to
achieve realistic results while maintaining high fidelity. Also, a Unet
based global-patch discriminator with spectral normalization is con-
structed to mitigate oversharp and artifacts. Additionally, we introduce
a Multi-Substrate Merging Up-scaler (MSMU) module, which replaces
the conventional single-layer naive sampling approach (e.g., bilinear,
and bicubic interpolation), effectively mitigating artifact issues. Instead
of relying on empirical naive adversarial learning based on alternate
optimization, a novel Bi-level Implicit Adversarial (BIA) learning strat-
egy based on a master–slave hierarchical optimization is introduced for

efficient and stable training.
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Fig. 3. Overview of CollaBA. The top panel illustrates the network architecture, which comprises a dual-path modulated-interactive enhancer that includes Generative Modulation
Prior (GMP) and Degradation Removal modules based on multi-scale feature Interaction (abbreviate IDR). The bottom panel depicts the computational flow of the bi-level implicit
adversarial strategy solution scheme.
3.2. Dual-path modulated-interactive enhancer

As illustrated in Fig. 3, we design a dual-path modulated-interactive
enhancer as the base architecture because it can (1) extract parallel
multi-resolution convolutional streams of multi-scale features and (2)
interact with information across multi-resolution streams. Specifically,
we first employ the unshuffle conversion (an inverse operation of
pixelshuffle) to reduce the spatial size and enlarge the channel size
before feeding the input into the main residual block architecture.
Afterwards, the unshuffle features is transmitted to multi-scale resid-
ual block structure for feature extraction and aggregation, and this
procedure will be completed with the aid of the following introduced
channel-decoupling Conditional Feature Transform (CFT) as a bridge.

3.2.1. Channel-decoupling CFT
In order to better enhance interactive learning of contextual in-

formation, we further use the input attention features 𝑓
𝑡𝑡 produced

by several convolutional layers to modulate the multi-scale interactive
feature 𝑗𝑖𝑛. Inspired by a series of literatures related to spatial feature
transformation and its variants [31,32], we first impose an affine
transformation to attention features 𝑓

𝑡𝑡 to generate modulating factors
(i.e., 𝑤𝜶 , 𝑤𝜷 ), and then execute the scaling and shifting operation for
𝑗𝑖𝑛, formulated by:

𝑗
𝐶𝐹𝑇 = 𝙲𝙵𝚃

(

𝑗
𝑖𝑛|𝑤𝜶 , 𝑤𝜷

)

= 𝙲𝚘𝚗𝚟(𝑗
𝑖𝑛)⊙𝑤𝜶 +𝑤𝜷 , 𝚠𝚑𝚎𝚛𝚎 𝑤𝜶 , 𝑤𝜷 = 𝙲𝚘𝚗𝚟(𝑓

𝑡𝑡 ).

(1)

Here 𝑗 represents the 𝑗th layer of the enhancer based on a residual
structure. To better balance fidelity and transformability, we introduce
channel-decoupling CFT transformation, denoted as 𝙲𝙳 − 𝙲𝙵𝚃, with the
aim of using learned prior features as conditional inputs to guide the
exposure level of 𝑗𝑖𝑛. As illustrated in Fig. 4(a), we first decouple
features 𝑗𝑖𝑛 by channel, splitting them into two halves: one half is
retained, while the other undergoes affine transformation:

𝑗
𝑜𝑢𝑡 = 𝙲𝙳 − 𝙲𝙵𝚃

(

𝑗
𝑖𝑛|𝑤𝜶 , 𝑤𝜷

)

= 𝙲𝚘𝚗𝚌𝚊𝚝
[

𝑗
𝑖𝑛,0, 𝙲𝚘𝚗𝚟(

𝑗
𝑖𝑛,1)⊙𝑤𝜶 +𝑤𝜷

]

, 𝚠𝚑𝚎𝚛𝚎 [𝑗
𝑖𝑛,0,

𝑗
𝑖𝑛,1] = 𝚂𝚙𝚕𝚒𝚝(𝑗

𝑖𝑛).

(2)
4

Here ⊙ denotes element-wise multiplication operation, 𝙲𝚘𝚗𝚌𝚊𝚝 implies
the concatenation operation, and 𝚂𝚙𝚕𝚒𝚝 indicates splitting the features
along the channel dimension.

3.2.2. Multi-scale feature interaction
As shown in Fig. 4, we construct three scales of feature streams,

for refined content reconstruction and aggregation. In each of these
scales, content reconstruction blocks  𝑗

𝑐𝑟𝑏 and selected feature aggre-
gation modules 𝛷𝑗

𝑠𝑘𝑓𝑓 are included, which are merged and interacted
by the combination of parallel cascades. In order to focus on more
significant context information, we introduce a self-attentive mecha-
nism (i.e., Selective Kernel Feature Fusion, SKFF [30]) as 𝛷𝑗

𝑠𝑘𝑓𝑓 to
aggregate and select features at multiple resolutions. As for  𝑗

𝑐𝑟𝑏, three-
path feature transformation and translation are performed for the input
features 𝐹 𝑗𝑖𝑛, and then we obtain the refined features performed by
𝐹 𝑗𝑜𝑢𝑡 =  𝑗

𝑐𝑟𝑏(𝐹
𝑗
𝑖𝑛). Parameters are shared within the same group to reduce

memory consumption. As shown in small right yellow box of Fig. 4, the
implemented process are presented by

𝜅 ,𝑜,𝜐 = 𝚁𝚎𝚜𝚑𝚊𝚙𝚎(𝐹 𝑗𝑖𝑛), 
𝑗
𝑐𝑟𝑏 ∶= 𝙲𝚘𝚗𝚌𝚊𝚝

[

𝜅⊗𝚂𝚘𝚏𝚝𝚖𝚊𝚡(𝑜)+𝜐, 𝐹
𝑗
𝑖𝑛
]

,

(3)

where 𝑗 represents the 𝑗th layer and 𝚁𝚎𝚜𝚑𝚊𝚙𝚎 denotes the dimension
transformation operation, and 𝚂𝚘𝚏𝚝𝚖𝚊𝚡 is the Softmax function. Note
that ⊗ denotes the Kronecker product multiplication.

3.2.3. Generative modulation prior and auxiliary illuminance constraint
To guide images to enhance contrast according to exposure level,

we construct a learnable illuminance prior module. The goal is to
provide an adaptive guidance to properly enhance underexposed areas
and avoid over-enhancement of normally exposed areas. Inspired by
the physical model of Retinex theory1, we design a self-guided heuris-
tic learning process, aiming to use the illuminance maps that imply

1 Retinex theory describes the phenomenon of human color vision. It can
be expressed as 𝐿 = 𝐼 ⊙𝑅, where 𝐿 is the low-light input, 𝑅 is the reflectance
layer, 𝐼 is the illumination layer which is estimated by the maximum value of
three color channels [16].
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Fig. 4. Illustrating the detailed (a) 𝙲𝙳 − 𝙲𝙵𝚃 module and (b) Multi-Scale Feature Interaction (MSFI) module. MSFT greatly ensures the selection and aggregation of features at
different resolutions, with a key component (i.e., Content Reconstruction Block, CRB) maintaining parameter sharing across three scales.
exposure levels as prior information, determined by:

𝐱𝙸𝚕𝚕 =
|𝛤 𝜉𝑀 (𝐱) − 𝛤 𝜉𝑀 (𝐲)|

𝛤 𝜉𝑀 (𝐲)
, 𝛤 𝜉𝑀 (⋅) = max

𝜉∈𝜋
(⋅), 𝜋 = {𝑟, 𝑔, 𝑏}, (4)

where 𝛤 𝜉𝑀 (⋅) returns the maximum value among three color channels
{𝑟, 𝑔, 𝑏}. 𝐱𝙸𝚕𝚕 is the desired illumination map as prior information to
guide contrast enhancement. During training, we introduce the aux-
iliary constraint (i.e., illuminance prior loss), refer to Eq. (7), as an
intermediate supervision for the expected illuminance attention map
𝐱𝙰𝚝𝚝. We directly adopt U-Net’s network as the infrastructure, and
leverage such generative illumination prior to provide diverse and rich
high-frequency details, i.e., 𝐱𝙰𝚝𝚝 = 𝚄𝙽𝚎𝚝(𝐱). A typical way of deploy-
ing generative priors is to merge the latent attention feature 𝑓

𝑡𝑡 =
𝙲𝚘𝚗𝚟(𝐱𝙰𝚝𝚝) and multi-scale feature through 𝜓 𝑗𝐶𝐷−𝐶𝐹𝑇 operation based
on Eqs. (1)–(2). Such a illumination prior structure ensures all local
patches of an enhanced images look like realistic normal-light ones,
which proves to be critical in avoiding local over- or under-exposures
as our experiments will reveal later.

3.2.4. Multi-substrate merging up-scaler
Traditional SR methods rely on interpolation upsampling techniques

to enhance image resolution, but they suffer from the following draw-
backs: (1) Lack of Texture Richness: They often fail to generate high-
resolution images with natural textures and rich details, resulting in
output images that appear smooth and lacking in realism. (2) Ar-
tifacts and Halos: Due to the ineffective modeling of scale-sensitive
features, traditional methods often introduce unrealistic artifacts, halos,
or aliasing artifacts. Motivated by this, we combine learnable sampling
methods like pixel-shuffle with traditional bicubic sampling, employing
a multi-scale integrated approach to increase resolution.

As shown in Fig. 5, MSMU utilizes pixel-shuffle  in parallel to
generate three distinct scale features 𝝉𝑼𝒊 from the input feature 𝑓 ,
where 𝑖 ∈ {1, 2, 4} represents three scale layers, formalized as follows:

𝝉𝑼𝒊 = 𝑃𝑆 (𝑓 ), 𝚠𝚑𝚎𝚛𝚎  ∶=

⎧

⎪

⎨

⎪

⎩

𝙸𝚍𝚎𝚗𝚝𝚒𝚝𝚢(𝑓 ) 𝙸𝚏 𝑖 = 1
𝙿𝚂(𝑓 ) 𝙸𝚏 𝑖 = 2

𝙿𝚂◦𝙿𝚂(𝑓 ) 𝙸𝚏 𝑖 = 4
(5)

Here 𝙸𝚍𝚎𝚗𝚝𝚒𝚝𝚢 denotes the identity operation, which signifies no
change in scale. 𝙿𝚂 is the pixel-shuffle operation for ×2 up-scaling.
Subsequently, these three sets of features with different sizes enter the
second stage called the dynamic aggregation block denoted as 𝐷𝐴 to
aggregate features of different scales, producing corresponding outputs
denoted as ̃𝝉𝑈𝑜 , where 𝑜 takes values from 𝛺 = {1, 2, 4}, representing
different output resolution levels. Through 𝐷𝐴, essential features are
dynamically selected for each ̃𝝉𝑈𝑜∈𝛺, which can be formalized as follows:

̃𝝉𝑼𝒐∈𝜴 =
⟨

𝑫𝑨(𝝉𝑼𝒊 )
⟩

𝒊=𝟏,𝟐,𝟒, 𝚠𝚑𝚎𝚛𝚎  ∶=

⎧

⎪

⎨

⎪

⎩

𝙸𝚍𝚎𝚗𝚝𝚒𝚝𝚢 𝙸𝚏 𝑖 = 𝑜
𝑜
𝑖 ↑𝙱𝚄 𝙸𝚏 𝑖 < 𝑜
𝑖
𝑜↓𝙳𝚂 𝙸𝚏 𝑖 > 𝑜

(6)
5

Here ↑𝙱𝚄 is a bilinear operation for 2x up-scaling. ↓𝙳𝚂 is a transposed
convolution for 2x down-sampling. Regarding the specific mathemat-
ical form of  mentioned above, if 𝑖 = 𝑜, an identity operation
is applied, as indicated by the blue solid line in Fig. 5; if 𝑜 < 𝑖, a
transposed convolution down-sampling operation with a stride of 2
is used, as indicated by the purple solid line; if 𝑜 > 𝑖, bilinear up-
sampling operation is employed, as indicated by the green solid line. In
a similar fashion, the third stage employs bicubic sampling in parallel
to enhance the resolution of features at three different scales. This can
be understood as a similar operation to Eq. (5), with the distinction
being the use of Bicubic operations  . Ultimately, the features
at different scales are aggregated and undergo a 1 × 1 convolution
transformation to yield the final upsampled image, formalized as �̃� =
𝙲𝚘𝚗𝚟𝟷×𝟷(𝙲𝚘𝚗𝚌𝚊𝚝(

⟨

 ( ̃𝝉𝑈𝑜 )
⟩

𝑜∈𝛺
)).

3.3. Training loss

The learning objective of training our CollaBA consists of: (1) illu-
mination prior loss to provide an adaptive bootstrap for exposure level,
(2) reconstruction loss and perceptual loss that constraints the outputs
�̃� close to the ground-truth 𝐲 in both pixel space and perceptual space,
(3) patch-based adversarial loss for restoring realistic textures.

Illumination Prior Loss. To obtain the expected illuminance atten-
tion map for modulating the degradation removal module, we use the
2 error metric to measure the prediction error as:

𝚒𝚕𝚕𝚞(𝐱𝙰𝚝𝚝, 𝐱𝙸𝚕𝚕) = ‖𝐱𝙰𝚝𝚝 − 𝐱𝙸𝚕𝚕‖2. (7)

Reconstruction Loss. We adopt the widely-used 𝐿1 loss as our
reconstruction loss 𝚛𝚎𝚌:

𝚛𝚎𝚌(�̃�, 𝐲) =
1
ℎ𝑤𝑐

∑

𝑖,𝑗,𝑘
|�̃�𝑖,𝑗,𝑘 − 𝐲𝑖, 𝑗, 𝑘|, (8)

where ℎ, 𝑤 and 𝑐 denote the height, width and number of channels of
�̃�, respectively.

Perceptual Loss. In order to ensure the consistency of image con-
tent in the feature space, we introduce the perceptual loss, defined as
follows

𝑝𝑒𝑟(�̃�, 𝐲) =
1

𝑐𝑗ℎ𝑗𝑤𝑗
‖𝜙𝑗 (�̃�) − 𝜙𝑗 (𝐲)‖22, (9)

where 𝜙 is the pretrained VGG-19 network, 𝑐𝑗 denotes the 𝑗th layer,
𝑐𝑗ℎ𝑗𝑤𝑗 denotes the size of the feature map at the 𝑗th layer.

Adversarial Loss. To support the generation of realistic textures in
natural image manifolds, we introduce a spectral-normalized U-Net-
style discriminator. The global-patch discriminator loss with Binary
Cross Entropy with logistic function, i.e.,

𝚊𝚍𝚟(𝒚, 𝒛) = −𝙱𝙲𝙴[𝚐𝚕𝚘(𝒚),𝚐𝚕𝚘(𝒛)] − 𝙱𝙲𝙴[𝚙𝚊𝚝(𝒚),𝚙𝚊𝚝(𝒛)], (10)

where 𝙱𝙲𝙴(,) = E𝒛(log(𝒛)) + E𝒚(log(1 − (𝒚))). 𝚐𝚕𝚘 and 𝚙𝚊𝚝

denote the global and local discriminators, respectively. Such a global-
patch discriminator setting facilitates a good balance of local detail
enhancement and artifact suppression.
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Fig. 5. Illustrating the proposed Multi-Substrate Merging Up-scaler (MSMU) module, which greatly ensures the selection and aggregation of features at different resolutions.
3.4. Bi-level implicit adversarial leaning

This section develops a novel BIA learning strategy based on the
master–slave hierarchical optimization reformulation.

3.4.1. Master–slave bi-level reformulation
In order to be able to optimize learnable parameters

{

𝝎, 𝝇
}

for
CollaBA, which in this case consists of the enhancer  with parameter 𝝇
and discriminator  with parameter 𝝎, the loss function 𝑢(𝐱, �̃�, 𝐲;𝝎, 𝝇),
comparing ground-truth labels 𝐲 to predictions �̃�, has to be designed.
The final loss is a combination of the single-modular losses 𝑢 ∈  .
Since each of the contributing single-modular loss function may behave
differently, weighting each with a factor 𝜚𝑢 is essential. This yields a
combined loss function 𝚝𝚘𝚝𝚊𝚕

(

𝐱, �̃�, 𝐲;𝝎, 𝝇
)

=
∑

𝑢∈ 𝑢
(

𝐱, �̃�, 𝐲;𝝎, 𝝇
)

⋅ 𝜚𝑢.
Instead of manually tuning 𝝔 = {𝜚𝑢} to account for the differing
variances and offsets amongst the single-modular losses, the coefficients
can be added to the learnable network parameters 𝜣 =

{

𝝎, 𝝇,𝝔
}

. We
introduce an augmenting 𝚝𝚘𝚝𝚊𝚕 with a regularization term 𝐑(𝜚𝑢) =
ln(1 + 𝜚2𝑢) to avoid trivial solutions. The final combined loss function
is expressed as

𝚝𝚘𝚝𝚊𝚕

(

𝐱, �̃�, 𝐲;𝜣
)

=
∑

𝑢∈

1
2 ⋅ 𝜚2𝑢

𝑢
(

𝐱, �̃�, 𝐲;𝝎, 𝝇) ⋅ 𝜚𝑢 + ln(1 + 𝜚2𝑢
)

, (11)

where 𝜚𝑢 denotes the weighting factor.  is the feasible region with
respect to multiple losses.

Most existing training strategies focus on tedious hyper-parameter
selection and empirical fine-tuning operations. In particular, the emerg-
ing adversarial learning strategy based on minimax formulation gen-
erally uses alternating gradient descent, but usually leads to training
often tending to oscillation instability and gradient disappearance.2
Motivated by the above, we propose a master–slave-induced hierar-
chical optimization framework, to explicitly characterize the dynamic
coupling relationship between the three types of parameters in the
gradient propagation process. Specifically, we consider the following
even more abstract constrained optimization principle:

min
𝝇,𝝔

̃𝚝𝚘𝚝𝚊𝚕

(

𝐱, �̃�, 𝐲; 𝝇,𝝔, �́�(𝝇), �́�(𝝔)
)

,

𝑠.𝑡. �́�(𝝇) ∈ (𝝇) ∶= argmax
𝝎

𝚊𝚍𝚟

(

𝐱, �̃�, 𝐲; 𝝇,𝝎,𝝔
)

,

�́�(𝝔) ∈ (𝝔) ∶= argmax
𝝎

𝚊𝚍𝚟

(

𝐱, �̃�, 𝐲; 𝝇,𝝎,𝝔
)

,

(12)

where the leader objective ̃𝚝𝚘𝚝𝚊𝚕 is the redefined upper-level objective
function with best-response (i.e., �́�(𝝇), �́�(𝝔)), and the follower objective
̃𝚊𝚍𝚟 is the lower-level objective function w.r.t. 𝝎. (𝝇) and (𝝔) are
the solution sets w.r.t. given 𝝇 and 𝝔, respectively.3 Intuitively, it is not
symmetric in terms of two levels of learning process 𝚝𝚘𝚝𝚊𝚕 and 𝚊𝚍𝚟,
in which the latter is served as a constraint on the former for obtaining
the optimal feedback transmitted to the leader objective.

2 Refer to Section 4.4 for experimental supports.
3 Referring the bi-level optimization for the solution set (𝝇) and (𝝔) [33,

34].
6

Algorithm 1 Bi-level Implicit Adversarial (BIA).

Require: Initialization 𝝇0,𝝎0,  parameterized by 𝝇, discriminator 
parameterized by 𝝎, and necessary hyper-parameters (𝜶𝒍 and 𝜶𝒖).

1: repeat
2: for not converged and 1 ≤ 𝑡 ≤ 𝑇 do
3: % Lower-level variable probe.
4: Update 𝝎 to obtain approximation �̂�.
5: �̂�(𝝎) ← 𝝎 − 𝜶𝒍∇𝝎𝚊𝚍𝚟(𝝎, 𝝇𝑡).
6: Calculate∇𝝇𝚊𝚍𝚟, ∇�̂�𝚊𝚍𝚟, and ∇�̂�̃𝚝𝚘𝚝𝚊𝚕.
7: Calculate 𝑮𝑩𝑹 by Eq. (17) with �̂� and current 𝝇𝑡.
8: % Upper-level variable probe.
9: Calculate ∇𝝇 ̃𝚝𝚘𝚝𝚊𝚕

(

𝝇𝑡
)

by Eq. (13) .
10: Update 𝝇𝑡+1 ← 𝝇𝑡 − 𝜶𝒖∇𝝇 ̃𝚝𝚘𝚝𝚊𝚕

(

𝝇𝑡
)

.
11: 𝑡 ← 𝑡 + 1.
12: end for
13: until training convergence.
14: Output: Optimal enhancer  with 𝝇∗.

3.4.2. Optimization algorithm
Based on a bi-level optimization reformulation, we introduce the

best-response gradient algorithm [33,34]. The detailed algorithm flow
regarding variable updates is illustrated in Fig. 3. We compute the
gradient of the leader objective ̃𝚝𝚘𝚝𝚊𝚕 in terms of 𝝇, formulated as4

∇𝝇 ̃
(

𝝇
)

=

direct gradient
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝝇 ̃

(

𝝇, �́�(𝝇)
)

+

𝑮𝑩𝑹∶ best-response gradient
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝝎̃

(

𝝇, �́�(𝝇)
)

∇𝝇 �́�(𝝇) . (13)

Considering that implicit function theorem can precisely estimate the
best-response gradient, i.e., 𝜕𝚊𝚍𝚟∕𝜕𝝎 = 0, then ∇𝝇 �́�(𝝇) is further
derived as

∇𝝇 �́�(𝝇) = −
[

∇2
𝝎𝚊𝚍𝚟

(

𝝇, �́�(𝝇)
)]−1 ∇2

𝝎𝝇𝚊𝚍𝚟

(

𝝇, �́�(𝝇)
)

. (14)

To avoid directly calculating the products of various Hessians and their
inversions, we further introduce a linear solver system 𝐁 based on
Eq. (14), reformulated as

𝑮𝑩𝑹 =
[

∇2
𝝎𝝇𝚊𝚍𝚟

]⊤
𝐁, where

[

∇2
𝝎𝝎𝚊𝚍𝚟

]

𝐁 = −∇𝝎̃𝚝𝚘𝚝𝚊𝚕. (15)

Here, (⋅)⊤ denotes the transposition operation. To further suppress the
complexity of two Hessian matrix ∇2

𝝎𝝎𝚊𝚍𝚟 and ∇2
𝝎𝝇𝚊𝚍𝚟, we consider

replacing the original Hessian operation and introduce two approxima-
tions using corresponding outer products, as follows:

∇2
𝝎𝝎𝚊𝚍𝚟 ≈ ∇𝝎𝚊𝚍𝚟∇𝝎⊤𝚊𝚍𝚟, ∇

2
𝝎𝝇𝚊𝚍𝚟 ≈ ∇𝝎𝚊𝚍𝚟∇𝝇⊤𝚊𝚍𝚟. (16)

By combining Eqs. (15)–(16), the response gradient 𝑮𝑩𝑹 is approxi-
mately obtained, i.e.,

𝑮𝑩𝑹 ≈ −∇𝝇𝚊𝚍𝚟

[(

∇𝝎⊤𝚊𝚍𝚟∇𝝎̃𝚝𝚘𝚝𝚊𝚕

)

/ (

∇𝝎⊤𝚊𝚍𝚟∇𝝎𝚊𝚍𝚟

)

]

. (17)

4 For convenience, we do not distinguish the optimization of the two
variables

{

𝝇,𝝔
}

in the leader objective, which is abbreviated as the variable

𝝇.
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Fig. 6. Illustrating a comparison of two different learning strategies (i.e., ADI and BIA), while also showing the iterative trajectories of the variables corresponding to these two
strategies. Dashed boxes depict the convergence of the two iterative programs to local solution and global optimal solution, respectively.
We summarize the BIA learning strategy in Alg. 1. In the training
process, with the current parameters 𝝇, we first optimize 𝝎 according
to the objective 𝚊𝚍𝚟 in several steps to approximate the best-response,
i.e., �̂�(𝝇) ≈ �́�(𝝇). Then, �́�(𝝇) is back-propagated to ̃𝚝𝚘𝚝𝚊𝚕 and calculate
𝑮𝑩𝑹 is calculated based Eq. (17).

Remark 1. Naive Alternative Learning vs. Bi-level Implicit Ad-
versarial Learning. As illustrated in Fig. 6, we compare the differ-
ences between two distinct training strategies from an optimization
perspective. From the modeling aspect, the traditional alternating
iteration scheme, based on the single-level minimax optimization model
min𝝇 max𝝎 𝚝𝚘𝚝𝚊𝚕

(

𝐱, �̃�, 𝐲;𝜣
)

, optimizes two parallel sub-problems in a
disjointed manner. In each update, it fixes one set of parameters to
update the other, following the iterative routine:

𝝎† = 𝝎 + 𝜂∇𝝎𝚝𝚘𝚝𝚊𝚕

(

𝐱, �̃�, 𝐲;𝝎, 𝝇,𝝔
)

, 𝝇† = 𝝇 − 𝜈∇𝝇𝚝𝚘𝚝𝚊𝚕

(

𝐱, �̃�, 𝐲;𝝎, 𝝇,𝝔
)

,

(18)

where 𝜂 and 𝜈 represent the learning rates for  and , respectively.
This iterative optimization process only computes the direct gradients
and overlooks the calculation of indirect gradients in Eq. (13), leading
to training oscillations and inaccurate gradient feedback. In contrast,
we have designed Alg. 1, which precisely computes the best-response
gradients 𝑮𝑩𝑹 using Eq. (17). The latter implies that the involved
strategies accurately capture the impact of 𝝎 on 𝝇 in every step of the
optimization. We have extensively validated the effectiveness of the
BIA in the experimental section (refer to Section 4.4).

4. Experimental results

4.1. Experimental setting

Implementation Detail. All the experiments are conducted on a
PC with an NVIDIA GeForce GTX 2080Titan GPU in the PyTorch 1.8.0
framework. We train our model with Adam optimizer for a total of 100k
iterations. The learning rate was set to 2 × 10−3 and then decayed by a
factor of 2 at the 70k-th, 75k-th iterations. The training mini-batch size
is set to 16.

Benchmark and Metric. We evaluate the performance of our pro-
posed method on two widely used datasets-RELLISUR.5 and DarkFace6

All these datasets have no overlap with our training dataset. We use the

5 https://vap.aau.dk/rellisur/
6 https://flyywh.github.io/CVPRW2019LowLight/
7

real-word RELLISUR dataset for training our CollaBA and other state-of-
art methods. It contains data at ×1, ×2 and ×4 of different resolutions,
the training set contains 3610 pairs of data at each resolution, and the
test set contains 425 pairs of data at each resolution. During training,
we resize the normal light and high resolution images to 1602 as ground
truth. The corresponding patches from low light low resolution pairs
are resized to as 80 × 80 and 40 × 40 for ×2 and ×4 joint degradation
removal tasks. As for testing, we construct two different real datasets
(i.e., RELLISUR-Test, and DarkFace-Test) with distinct sources.

For the evaluation, we employ six widely-used full-reference met-
rics, including Peak Signal to Noise Ratio (PSNR), Structural Similarity
Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), Root
Mean Square Error (RMSE), Feature-based Similarity Index (FSIM) and
Signal to Reconstruction Error ratio (SRE). We also introduce two
no-reference quality assessment (i.e., EME and LOE) to evaluate the
effectiveness.

Comparisons with State-of-the-Art. 1) Normal-light SR methods:
We compare our CollaBA with several state-of-the-art super-resolution
methods, including ESRGAN [35], RDN [36], RCAN [37], SRFBN [27],
PAN [38], SRResNet [39], MIRNet [30], SwinIR [29], Restormer [15],
SRFormer [14] and HAT [13]. All these methods have been re-trained
on RELLISUR for fair comparisons. 2) Cascaded LLE↦SR methods: In
addition, we conduct comparative experiments between cascaded SR
and LLE methods. To be specific, we selected the most recent SR
method, HAT [13], as an exemplar of super-resolution techniques and
integrated it into a cascade behind three LLE methods: ZeroDCE [22],
SCI [12], and LLFormer [2]. In this context, LLFormer represents the
current state-of-the-art supervised LLE method. For the unsupervised
LLE methods, ZeroDCE and SCI, we performed a dedicated retraining
process exclusively on the ×1 low-light RELLISUR dataset. In contrast,
HAT, serving as the subsequent super-resolution network, underwent
retraining on both ×2 and ×4 normal-light datasets. We denote this
modified version as HAT‡ to distinguish it from the standard low-light
data configuration.

4.2. Experimental evaluation

Quantitative Evaluation.
Table 1 reports the numerical scores achieved in the ×2 and ×4

tasks using the authentic RELLISUR-Test dataset. It is evident that our
approach surpasses the current state-of-the-art methods significantly,
as demonstrated by various numerical metrics, securing the top po-
sition in all evaluation criteria for the ×2 task. For the ×2 task, our
method achieves a remarkable PSNR improvement of 0.406 dB and a
substantial LPIPS improvement of 35.8%. In the case of the ×4 task,

https://vap.aau.dk/rellisur/
https://flyywh.github.io/CVPRW2019LowLight/
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Fig. 7. Qualitative comparisons on RELLISUR-Test samples with scale factor of ×2 task. The image size scales from an input of 624 × 624 to an output of 1248 × 1248. The
following signal maps illustrate the variations in pixel intensity between the generated images and the reference image along the randomly selected line segment. For ease of
viewing, we display input images and the results of various methods at an equal size. (Best viewed with zoom.)
.

Table 1
Quantitative comparison on RELLISUR-Test dataset for ×2 and ×4 tasks (i.e., ×2 / ×4). Quantitative results in terms of six full-reference metrics including PSNR, SSIM, LPIPS,
RMSE, FSIM, and SRE. Notice that all methods are retrained on RELLISUR. The top-ranked and the second-ranked method are highlighted in red bold and blue bold, respectively
Metrics ESRGAN18𝐸𝐶𝐶𝑉 RDN18𝐶𝑉 𝑃𝑅 RCAN18𝐸𝐶𝐶𝑉 SRFBN19𝐶𝑉 𝑃𝑅 PAN20𝐸𝐶𝐶𝑉 SRResNet20𝐸𝐶𝐶𝑉

PSNR↑ 18.087/17.183 18.795/18.213 19.765/19.078 18.421/17.679 18.783/18.106 18.156/17.594
SSIM↑ 0.655/0.647 0.701/0.703 0.712/0.713 0.662/0.665 0.693/0.700 0.667/0.684
LPIPS↓ 0.300/0.471 0.455/0.584 0.426/0.550 0.510/0.640 0.450/0.559 0.451/0.581
RMSE↓ 0.135/0.149 0.120/0.128 0.110/0.119 0.125/0.136 0.119/0.129 0.128/0.137
FSIM↑ 0.873/0.858 0.874/0.866 0.881/0.874 0.847/0.836 0.867/0.859 0.848/0.841
SRE↑ 55.523/58.306 55.865/58.776 56.372/59.213 55.678/58.514 55.852/58.713 55.524/58.457

EME↑ 7.733/3.549 5.361/3.083 5.067/2.955 5.805/3.672 5.381/3.479 5.318/3.098
LOE↓ 45.468/43.976 45.642/44.976 48.852/47.254 47.698/45.582 49.793/48.623 48.283/44.697

Metrics MIRNet20𝐸𝐶𝐶𝑉 SwinIR21𝐼𝐶𝐶𝑉 Restormer22𝐶𝑉 𝑃𝑅 SRFormer23𝐶𝑉 𝑃𝑅 HAT23𝐶𝑉 𝑃𝑅 CollaBA (Ours)

PSNR↑ 21.053/19.783 18.386/17.534 21.215/20.298 19.556/18.723 20.213/19.751 21.621/20.423
SSIM↑ 0.720/0.704 0.640/0.663 0.727/0.720 0.704/0.705 0.719/0.715 0.787/0.734
LPIPS↓ 0.436/0.599 0.577/0.688 0.385/0.492 0.469/0.613 0.454/0.561 0.247/0.371
RMSE↓ 0.095/0.109 0.125/0.139 0.095/0.106 0.110/0.121 0.103/0.110 0.073/0.089
FSIM↑ 0.889/0.878 0.845/0.840 0.892/0.885 0.877/0.869 0.882/0.873 0.896/0.873
SRE↑ 57.065/59.635 55.643/58.432 57.096/59.824 56.237/59.023 56.584/59.571 57.831/59.817

EME↑ 7.879/3.841 6.773/3.346 7.645/3.986 7.513/3.462 7.847/3.543 7.972/3.794
LOE↓ 30.968/33.966 46.042/42.581 30.889/30.856 50.411/45.606 42.265/35.284 29.371/30.012
Table 2
Quantitative comparison among cascaded LLE↦SR methods on RELLISUR dataset (i.e., ×2 and ×4 tasks (i.e., ×2/×4)). † indicates training on ×1 low-light RELLISUR dataset for
LLE. ‡ denotes training on ×2 or ×4 RELLISUR for normal-light SR.

LLE↦SR Method PSNR↑ SSIM↑ LPIPS↓ RMSE↓ EME↑ LOE↓

ZeroDCE21𝑇𝑃𝐴𝑀𝐼
† ↦HAT23𝐶𝑉 𝑃𝑅

‡ 12.927/12.524 0.354/0.321 0.698/0.739 0.194/0.197 7.693/3.684 56.726/54.178
SCI22𝐶𝑉 𝑃𝑅† ↦HAT23𝐶𝑉 𝑃𝑅

‡ 14.963/14.776 0.439/0.452 0.591/0.697 0.200/0.205 7.521/3.348 36.413/37.879
LLFormer23𝐴𝐴𝐴𝐼† ↦HAT23𝐶𝑉 𝑃𝑅

‡ 21.218/20.135 0.720/0.718 0.455/0.575 0.093/0.105 7.904/3.721 35.084/36.215
8
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Fig. 8. Qualitative comparisons on RELLISUR-Test samples with scale factor of ×4 task. The image size scales from an input of 624 × 624 to an output of 2496 × 2496. The
following signal maps illustrate the variations in pixel intensity between the generated images and the reference image along the randomly selected line segment. For ease of
viewing, we display input images and the results of various methods at an equal size. (Best viewed with zoom.)
Table 3
Quantitative comparison on DarkFace dataset for ×2 and ×4 tasks (i.e., ×2/×4). Quantitative results in terms of two no-reference metrics including EME and LOE. Notice that all
methods are retrained on RELLISUR. The top-ranked and the second-ranked method are highlighted in red bold and blue bold, respectively.
Metrics ESRGAN18𝐸𝐶𝐶𝑉 RDN18𝐶𝑉 𝑃𝑅 RCAN18𝐸𝐶𝐶𝑉 SRFBN19𝐶𝑉 𝑃𝑅 PAN20𝐸𝐶𝐶𝑉 SRResNet20𝐸𝐶𝐶𝑉

EME↑ 15.464/10.911 11.025/7.637 14.657/10.911 8.010/5.824 11.167/7.094 10.522/6.492
LOE↓ 1.874/1.980 1.942/1.990 1.898/1.980 1.891/2.007 1.898/1.995 1.926/2.007

Metrics MIRNet20𝐸𝐶𝐶𝑉 SwinIR21𝐼𝐶𝐶𝑉 Restormer22𝐶𝑉 𝑃𝑅 SRFormer23𝐶𝑉 𝑃𝑅 HAT23𝐶𝑉 𝑃𝑅 CollaBA (Ours)

EME↑ 27.579/16.900 16.820/13.124 30.453/21.156 27.125/15.689 28.225/16.341 32.710/21.086
LOE↓ 1.897/2.014 1.900/1.975 1.893/1.975 1.865/2.214 1.986/2.012 1.846/1.965
it still attains a PSNR improvement of 0.125 dB and a notable LPIPS
improvement of 32.6%.

Furthermore, we present quantitative results for cascaded methods
in Table 2. These scores clearly indicate that the cascade approach does
not yield enhancements in joint task performance, particularly when
employing unsupervised LLE methods (i.e., ZeroDCE and SCI), result-
ing in deteriorated enhancement outcomes after upscaling. Lastly, we
provide quantitative comparisons using the genuine low-light human
face dataset, DarkFace-Test, in Table 3. It is evident that our method
outperforms existing approaches across nearly all no-reference metrics,
reaffirming the robust generalization of our method in real-world,
highly low-light scenarios.

Qualitative Evaluation. Figs. 7 and 8 present the visualization
outcomes for the ×2 and ×4 tasks, respectively, using the authentic
RELLISUR-Test dataset. Upon close observation of the locally magni-
fied regions, it becomes apparent that a variety of normal-light SR
methods fall short of attaining the anticipated visual quality. These
methods exhibit pronounced noise, blurriness, and artifacts, as evident
in approaches such as SwinIR and SRFormer, both afflicted with un-
satisfactory blurry textures. In stark contrast, our approach excels in
9

delivering the most natural and authentic visual quality, character-
ized by vibrant colors, pleasing brightness, and notably exceptional
proficiency in the recovery of high-frequency structural details. More-
over, the signal maps depicting pixel intensity levels indicate that our
approach consistently approaches the reference image.

Figs. 9 and 10 showcase the visualization results on the DarkFace-
Test dataset. Likewise, it is apparent that our approach surpasses in
the preservation of fine structures and natural color fidelity, presenting
delightful luminosity while faithfully retaining realistic texture details.

Computational Efficiency. To examine model efficiency, we re-
ported the Parameters and FLOPs of some recent methods in Table 4.
We conduct the measures with images of size 128 × 128 on a single
2080Titan GPU. Note that, our proposed method could maintain a good
balance of performance and computational efficiency, and is relatively
competitive in terms of FLOPs.

4.3. Nighttime image semantic segmentation

Last but not least, we also validate the facilitation effects for the
nighttime visual perception tasks. Specifically, we utilize the semantic
segmentation model SAM [40] to investigate how different approaches
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Fig. 9. Qualitative comparisons on real-world nighttime DarkFace-Test for ×2 super-resolution task. For ease of viewing, we display input images and the enhanced results of
various methods at an equal size. (Best viewed with zoom.)

Fig. 10. Qualitative comparisons on real-world nighttime DarkFace-Test for ×4 super-resolution. For ease of viewing, we display input images and the enhanced results of various
methods at an equal size. (Best viewed with zoom.)
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Table 4
Quantitative comparison in terms of model size, FLOPs, and inference time among various methods. Notice that all methods are retrained on RELLISUR-Test. We conduct the
measures for RELLISUR-Test dataset with images of size 128 × 128 on a single 2080Titan GPU. The best method are highlighted in bold.

Metrics RCAN18𝐸𝐶𝐶𝑉 SwinIR21𝐼𝐶𝐶𝑉 Restormer22𝐶𝑉 𝑃𝑅 SRFormer23𝐶𝑉 𝑃𝑅 HAT23𝐶𝑉 𝑃𝑅 CollaBA (Ours)

Params (MB)↓ 15.444/15.592 11.683/11.825 26.126/26.209 10.162/10.220 9.473/9.621 13.453/13.625
FLOPs (G)↓ 251.002/261.006 57.154/67.158 35.375/41.327 81.797/83.006 58.990/68.994 22.059/66.872
Inference (S)↓ 0.047/0.049 3.879/4.226 0.033/0.035 0.218/0.221 0.184/0.186 0.031/0.032
Fig. 11. Qualitative comparisons of various methods’ visualized semantic segmentation results on the large-scale SAM model. The recovery results for various methods for the
selected sample (i.e., 00266-3.0) are shown in Fig. 8. It can be observed that our segmentation results are the closest to the reference image.
Fig. 12. Comparison of PSNR score (Left), and training loss (Right) in terms of the iteration (×104) under two different strategies, i.e., ‘‘Naive Learning Strategy (i.e., ADI)’’ and
‘‘Bi-level Learning Strategy (i.e., BIA)’’. Our strategy is to achieve peak performance quickly and steadily (i.e., 0.1684 dB PSNR improvements with 31.25% iterations).
Fig. 13. Ablation study of the effect of GMP. The result w/o GMP tends to generate
unnatural-looking results (e.g., over-exposure, distorted color, unpleasant artifacts).

are beneficial to the downstream high-level tasks. We display the
qualitative comparison and a quantitative comparison in Fig. 11. In
comparison, the proposed method obtains more accurate segmentation
results.
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4.4. Ablation study

We perform several ablation studies to demonstrate the effective-
ness of each component (i.e., GMP, BIA and different losses) of CollaBA
as follows.

Explorations on GMP and MSMU. Table 5 in [No. 0-No. 2]
demonstrates the effectiveness of the GMP module in the absence of
BIA. Comparing scenarios [No. 0] and [No. 2], it is observed that
removing GMP results in a decrease across three metrics, with PSNR
dropping by 0.468dB/0.317 dB for ×2 and ×4 tasks, respectively. In
Fig. 13, when the GMP branch is discarded without adaptive exposure
level, i.e., only keep the degradation removal module, the restored
images fails to recover the normal color state. Severe color casts and
overexposed whitening emerge between adjacent regions (i.e.,  ∶ w/o
GMP). A performance drop in [No. 3] is observed if we do not use the
operation 𝙲𝙳 − 𝙲𝙵𝚃 but with operation 𝙲𝚘𝚗𝚌𝚊𝚝 (lower PSNR and higher
LPIPS), demonstrating the positive impact of 𝙲𝙳 − 𝙲𝙵𝚃. Comparing cases
[No. 0] and [No. 4], it is evident that removing the MSMU leads
to a decrease in PSNR by 0.249dB/0.234 dB for ×2 and ×4 tasks,
respectively, compared to a simple upsampling layer (e.g., Bilinear).

Effects of the BIA Strategy. We have investigated the proposed
BIA learning mechanism as a replacement for the simplistic alternating
learning approach. The corresponding quantitative scores are available
in Table 5 in [No. 1], demonstrating noteworthy performance enhance-
ments of 0.168 dB and 0.211 dB in terms of PSNR for the ×2 and ×4
tasks, respectively. Fig. 12 further illustrates that our BIA method main-
tained a more stable training process and achieved peak performance
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Table 5
Ablation study of the proposed modules (i.e., GMP and MSMU) and BIA learning strategy for ×2 and ×4 tasks (i.e., ×2/×4). For convenience,
it should be noted that our experiments from groups No. 2 to No. 4 were conducted without the implementation of the BIA strategy.
No. Configuration PSNR↑ SSIM↑ LPIPS↓

0) CollaBA 𝟐𝟏.𝟔𝟐𝟏/𝟐𝟎.𝟒𝟐𝟑 𝟎.𝟕𝟖𝟕/𝟎.𝟕𝟑𝟒 𝟎.𝟐𝟒𝟕/𝟎.𝟑𝟕𝟏
1) w/o BIA 21.4530.168↓/20.2120.211↓ 0.7590.028↓/0.7180.016↓ 0.2830.036↑/0.3890.018↑
2) w/o GMP 21.1530.468↓/20.1060.317↓ 0.7460.041↓/0.7050.029↓ 0.2910.044↑/0.4110.040↑
3) w/o 𝙲𝙳 − 𝙲𝙵𝚃 (w/ 𝙲𝚘𝚗𝚌𝚊𝚝) 21.3420.279↓/20.1300.293↓ 0.7610.026↓/0.7120.022↓ 0.2810.034↑/0.3960.025↑
4) w/o MSMU (w/ Bilinear) 21.3720.249↓/20.1890.234↓ 0.7630.024↓/0.7150.019↓ 0.2640.017↑/0.3850.014↑
Fig. 14. Ablation study of different losses (w/o BIA). The arrow indicates losses are added in increments.
more rapidly. For instance, it attained the highest PSNR of 21.621
with only 25% of the iterations compared to the alternating strategy.
Furthermore, the loss curve exhibited a smoother descent throughout
the entire training process, in stark contrast to the oscillations observed
in the alternating strategy.

Contribution of Each Loss. Fig. 14 presents the results of loss
ablation experiments, with a specific focus on the ×2 task. The direc-
tion of the arrows signifies the gradual incorporation of various loss
components. It is noteworthy that the table reveals score improvements
achieved through 𝑝𝑒𝑟, amounting to 0.24 dB for PSNR and 0.032 for
the LPIPS metric, respectively. We observe a substantial enhancement
in performance across all metrics following the inclusion of the 𝑖𝑙𝑙𝑢
loss. Particularly noteworthy is the profound impact of introducing
the 𝑎𝑑𝑣 loss on the perceptual score LPIPS, resulting in a significant
reduction of 0.232. Furthermore, the ablation experiments validate
the positive influence of imposing constraints on hyper-parameters
(i.e., 𝐑(𝜚𝑢)) on the ultimate performance.

5. Conclusion

This research delves into the relatively uncharted area of super-
resolution in low-lighting conditions. Utilizing a dual-path modulated-
interactive enhancer, we have crafted a generative modulation prior for
use as guidance information, coupled with an interactive degradation
removal branch to enhance details and suppress artifacts. Further-
more, our novel learning mechanism acts as a training strategy to
augment performance and foster stable training. This study represents
significant progress in the field, adeptly addressing the complexities of
super-resolution tasks in challenging low-lighting conditions. However,
our method still faces limitations in terms of lightweight design and
automated learning, particularly when addressing the more complex
challenges of the real world, such as dynamically changing environ-
mental conditions, diverse data distributions, and integration with
downstream high-level perception tasks. In future work, we aim to
develop more efficient learning strategies (i.e., multi-level optimiza-
tion and meta-learning) and more lightweight network architectures
(i.e., model pruning, and distillation) tailored for further advancements
in various extreme and adverse scenarios.
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