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ABSTRACT
Due to device constraints and lighting conditions, captured images
frequently exhibit coupled low-resolution and ultra-dark degrada-
tions. Enhancing the visibility and resolution of ultra-dark images
simultaneously is crucial for practical applications. Current ap-
proaches often address both tasks in isolation or through simplistic
cascading strategies, while also relying heavily on empirical and
manually designed composite loss constraints, which inevitably
results in compromised training efficacy, increased artifacts, and di-
minished detail fidelity. To address these issues, we propose TriCo,
the first to adopt a Tri-level learning framework that explicitly
formulates the bidirectional Cooperative relationship and devises
algorithms to tackle coupled degradation factors. In the optimiza-
tion across Upper (U)-Middle (M)-Lower (L) levels, we model the
synergistic dependencies between illumination learning and super-
resolution tasks within the M-L levels. Moving to the U-M levels,
we introduce hyper-variables to automate the learning of beneficial
constraints for both learning tasks, moving beyond the traditional
trial-and-error pitfalls of the learning process. Algorithmically, we
establish a Phased Gradient-Response (PGR) algorithm as our train-
ing mechanism, which facilitates a dynamic, inter-variable gradient
feedback and ensures efficient and rapid convergence. Moreover,
we merge inherent illumination priors with universal semantic
model features to adaptively guide pixel-level high-frequency de-
tail recovery. Extensive experimentation validates the framework’s
broad generalizability across challenging ultra-dark scenarios, out-
performing current state-of-the-art methods across 4 real and syn-
thetic benchmark datasets over 6 metrics (e.g., 5.8%↑ in PSNR and
26.6%↑ in LPIPS).
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Figure 1: Visual comparison of advanced LLE [46, 61] and SR
methods [4, 76] applied both independently and in a cascaded
manner to inputs with coupled degradations.
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1 INTRODUCTION
Enhancing visibility and enlarging the resolution of ultra-dark im-
ages simultaneously is a daunting task with substantial real-world
significance for fields such as intelligent surveillance and nocturnal
autonomous driving [28, 44, 60, 62]. Due to inherent limitations in
imaging devices and constraints posed by environmental lighting
conditions, captured data frequently exhibits coupled degradations
characterized by low resolution and extreme darkness[8, 34, 45, 67].
Imaging devices may struggle to capture clear details in poorly lit
environments, resulting in images of low resolution; concurrently,
insufficient ambient lighting exacerbates the darkness of the images,
making content difficult to discern. This paper addresses the inte-
grated challenge of enhancing brightness and increasing resolution
in ultra-dark images plagued by these intertwined degradations.

Capturing images in ultra-low-light settings introduces a plethora
of challenges that amplify the complexity of this joint task, includ-
ing uneven exposure resulting in highly irregular lighting, diminished
contrast, color inaccuracies, and an overflow of artifacts. Standard
image Super-Resolution (SR) techniques [20, 31, 63, 65], crafted
with modular techniques for image resolution enhancement under
normal-lighting scenarios, cannot be straightforwardly adapted to
enhance the luminance and resolution of images captured in low-
light conditions. Indeed, the direct application of these techniques
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would inevitably amplify hidden noise, blur, and artifacts present
in darkness, leading to unnatural edges and textures and deviating
from the primary goal of super-resolution. Contrarily, recent Low-
Light Enhancement (LLE) methods [28, 40, 68], while capable of
brightening, fall short in concurrently amplifying resolution and
authentically enhancing high-frequency details. This prompts a
further inquiry: Can LLE and SR be effectively combined in a sim-
ple “A+B” cascaded format to achieve the desired outcomes? Upon
evaluation, we ascertain that this direct “A+B” does not address the
entangled degradation factors at the data level, possibly akin to a
"A×B" degraded form, with ongoing shortcomings in enhancing
brightness and rendering texture details.

As illustrated in Fig. 1, we present a visual comparison of two
cutting-edge LLE methods – SCI [46] and LLFormer [61] – along-
side two normal-light SR techniques, HAT [4] and SRFormer [76].
A closer examination reveals that employing HAT and SRFormer
independently falls short in recapturing fine details, producing
blurred artifacts. Similarly, cascaded LLE⇒SR approaches (e.g.,
SCI⇒HAT, LLFormer⇒HAT) also fail to restore adequate bright-
ness, exacerbating noise and structural distortions when magnified.
In stark contrast, our proposed method generates natural and au-
thentic exposure and color fidelity, alongside improved structural
clarity and texture detail. In addition to the methods previously
mentioned, a few recent studies have emerged focusing on super-
resolution within low-light scenes [6, 19]. They tend to rely on
simple brightness corrections and resolution scaling on synthetic
datasets, leading to poor generalization in real-world scenarios.
Thus, we summarize the two primary shortcomings limiting the
efficacy of existing methods: (i) The failure to recognize the intrica-
cies of degradation-coupled data, which extends beyond a simplistic
additive enhancement model. This overlooks the intrinsic bidirectional
cooperation necessary for joint processing. (ii) A heavy reliance on
empirical network design and manual aggregation of losses. Such
methods disregard the guiding principles of physical image formation,
and overlook the crucial role that suitably chosen loss constraints play
in facilitating cooperative learning between intertwined tasks.

Stemming from these insights, this paper seeks to explore a
tri-level optimization perspective that formulates the cooperative
relationships and devises a corresponding solution strategy. We pro-
pose TriCo, aiming to automate the optimization of these weighted
constraints with hyper-variable and the coupling dependencies
between two entangled tasks, striving to achieve a unified enhance-
ment. Specifically, we initiate the process with an illumination inter-
polation mapping inspired by Retinex theory, yielding a brightened
reflectance that serves as the foundation for subsequent feature-
level super-resolution enhancement. We leverage universal founda-
tional semantic model priors and illumination features under the
self-regularized luminance constraint to provide dual guidance for
the super-resolution process. On the algorithmic front, we have
crafted a phased gradient-response algorithm as our training mech-
anism, meticulously designed to synergize the optimization of three
key variables while offering dynamic gradient feedback throughout
the training phase, thereby ensuring streamlined training efficiency
and rapid convergence. In summary, our contributions are fourfold:

• We introduce a novel Tri-level optimization method that
explicitly models the bidirectional Cooperative relationship

between illumination learning and super-resolution, named
TriCo. This approach effectively addresses the combined
challenges of low-resolution and ultra-dark conditions by
synergistically enhancing and enlarging degraded images.
• We establish an Upper (U)-Middle (M)-Lower (L) level nested
formulation, which in its M-L level, explicitly delineates the
collaborative dependency of two entangled tasks. In the U-M
level, we integrate hyper-variables to autonomously enforce
positive constraint feedback, thus dismantling the reliance
on manual trial-and-error intervention.
• We propose a Phased Gradient-Response (PGR) algorithm as
the training mechanism, designed to synergistically optimize
three variables while providing dynamic gradient feedback,
thus achieving efficient training and rapid convergence.
• Extensive experimentation validates the framework’s broad
generalizability and performance advantages across 4 real
and synthetic benchmark datasets over 6 metrics (e.g., 5.8%↑
in PSNR and 26.6%↑ in LPIPS).

2 RELATEDWORK
Low-light Image Enhancement/Image Super-Resolution. LLE’s
goal is to make images engulfed in darkness visible [9, 10, 44]. Early
works generally concentrated on leveraging handcrafted priors and
empirical insights for LLE, such as Retinex model [21, 23, 27] for
separate treatment of illumination and reflection. Recent advance-
ments have been seen with models based on convolutional neural
networks, addressing these fundamental challenges [2, 18, 40, 41,
46, 59]. Especially, the method [66] proposed constructing a flex-
ible semantic-aware embedding module for the low-light image
enhancement task to consider the semantic information of different
regions and alleviate color deviation issues. The author proposed
a Retinex-based single-stage network architecture called Retinex-
former [2], which guides the non-local interaction modeling of
regions under different lighting conditions through an illumination-
guided transformer. Typically, these techniques always rely on
manually selecting complex loss functions, and they cannot be di-
rectly applied to effectively address the super-resolution task of
low-light images. Instead, we introduce a tri-level learning strategy
to model this coupled multi-degradation task, as well as pinpoint
beneficial constraint feedback, diverging from the reliance on em-
pirical hyperparameter tuning.

Normal-light SR task generates high resolution images from low
resolution inputs under standard lighting conditions [13, 13, 30, 51,
56]. Recently, a large number of methods based on convolutional
neural networks have emerged to continuously refresh the perfor-
mance [31, 58, 66]. With the growing popularity of transformer-
based technologies, many leading-edge methods [4, 5, 32, 76] have
been developed for super-resolution enhancement, including SwinIR
[32], Restormer [72], the recently proposed SRFormer [76] and
HAT [4]. Indeed, these methods tailored for normal lighting condi-
tions fail to address the challenges posed by low-light environments,
often resulting in undesirable outcomes such as artifact spreading
and texture blurring. Drawing on this, we fuse semantic cues from
universal models [25, 74] with illumination attributes for modu-
lation, meticulously steering the detail restoration of reflectance
features and maintaining color consistency.
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Figure 2: The overall TriCo framework. (a) initiates with an interpolation-based illumination regulator 𝑁𝑖𝑟 (parameterized by
𝝎𝒊), producing a lit-up reflectance 𝒗. Then 𝒗 feeds into a frozen SAM for multi-scale semantic prompts, while concurrently
undergoing refinement for the LFR (𝑁𝑓 𝑟 parameterized by 𝝎𝒔 ). (b) establishes tri-level learning paradigm with a phased
gradient-response algorithm to foster a collaborative, automated, and efficient training process.

Low-light Image Super-Resolution. Recent forays into super-
resolution focused on low-light imagery, have yet to yield satisfac-
tory results [6, 16, 17, 19, 52, 57, 71]. For instance, Cheng et al. [6]
proposed a light-guided and cross-fusion U-Net, featuring an inten-
sity estimation unit, targets uneven-light image super-resolution.
Yet, its sole reliance on pixel shuffling for resolution enlargement
introduces notable color distortion and a lack of clarity in structure.
A potential reason is that previous approaches did not account for
the coupled collaboration between the two tasks, treating them in
isolation. Hence, we employ hierarchical optimization to model and
solve this multi-tiered coupled task.

Hierarchical Bi-level Optimization. Bi-level optimization is
the hierarchical mathematical program, where the feasible region
of upper-level task is restricted by the solution set mapping of
lower-level task and the two task are mutually reinforced [26, 36].
Subsequently, the bi-level optimization framework has been widely
applied across various application fields in machine learning and
computer vision, e.g., hyper-parameter optimization [22, 39, 42, 43],
multi-task and meta learning [38, 47, 55], neural architecture search
[70, 77], and image processing and analysis [14, 15, 35, 37, 50]. Espe-
cially recently, the paper [50] proposed a triple-level optimization
framework, which designs network architectures through cooper-
ating optimization and auto-searching mechanisms to handle vari-
ous video rain circumstances, significantly improving the fidelity
and temporal consistency of rain removal. Similarly driven by this
triple-level optimization, we explicitly consider the collaborative
relationship between super-resolution and brightness adjustment
tasks, constructing a novel perspective of automated learning with
multiple constraints for modeling and solving.

3 METHODOLOGY
Our TriCo aims to transform extremely dim, low-resolution images
x𝑙𝑙 into luminance-friendly, super-resolution counterparts y𝑛𝑠 . In
the following, we firstly delve into the architecture of our model,
followed by the details of the proposed learning strategy.

3.1 Illumination-Guided Integrated Network
Acknowledging the consensus that direct enlarging of dark images
can result in the loss of details, noise amplification, and artifacts,
we meticulously crafted an illumination-guided integrated network.
This network does not merely cascade brightness adjustment with
resolution enhancement modules; instead, it adopts a more pro-
found integration approach to ensure a holistic improvement. As
depicted in Fig. 2, our network adopts a top-down integration ap-
proach, seamlessly incorporating an illumination adjustment sub-
network for initial brightness enhancement and a feature-level
refinement sub-network for resolution upscaling. In this process,
we introduce a key cross-attention-based transformer bridging com-
ponent [16] that utilizes illumination and semantic priors as cues
for guided refinement. This architecture is summarized into two
phases: (i) the Learning Interpolated Illuminance (LII), focusing
on adjusting the initial luminance, and (ii) the Learning Feature
Refinement (LFR) for super-resolution, dedicated to enhancing and
enlarging the image details at the feature level.

From LII to LFR. LII performs the initial mapping from “low-
light” to “normal-light”. Based on Retinex theory, the normalized
illumination map satisfies the inequality within the dynamic range:
0 ≤ x𝑙𝑙 ≤ u ≤ 𝐼 . Thus, LII is designed to construct an interpolation
mapping to estimate the illumination map u. Finally, the initial
reflectance map v is obtained by applying element-wise division to
u. The initial reflectance map v is then input to the LFR sub-network
(i.e., 𝑁𝑓 𝑟 ) for fine-grained feature modulation, ensuring that the
upsampling process generates more high-frequency details:{

u = 𝜶 · x𝑙𝑙 + 𝜷 · I, {𝜶 , 𝜷} = 𝑁𝑖𝑟 (𝝎𝒊 ; x𝑙𝑙 ),
v = x𝑙𝑙 ⊘ u, y𝑛𝑠 = 𝑁𝑓 𝑟 (𝝎𝒔 ; v),

(1)

where the interpolation factors 𝜶 and 𝜷 are generated by the un-
derlying Unet-style illumination regulator 𝑁𝑖𝑟 and satisfy the con-
straints within the unit interval, with their sum equaling 1. 𝝎𝒊 and
𝝎𝒔 are network parameters of 𝑁𝑖𝑟 and 𝑁𝑓 𝑟 , respectively. Finally, we
introduce a dynamic grid up-sampling module [11] to enlarge the
image dimensions. The uniqueness of LII lies in its reliance solely
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on a single luminance loss for unsupervised learning, eliminating
cumbersome training with multiple stages and losses.

Also, we feed v into a pre-trained large-scale base semanticmodel
(i.e., MobileSAM [25, 74]) 𝑁𝑠𝑎𝑚 to extract multi-layer semantic fea-
tures. We note that the multi-scale illuminance features and seman-
tic features can serve as expert cues containing degradation priors
(i.e., exposure and color information of different local areas). There-
fore, we use the cross-attention-based transformer to modulate
reflectance features layer-by-layer within the LFR sub-network’s
decoder, guiding the generation of high-frequency texture details.
This module is designed based on the fact that illumination, as
an intrinsic attribute of local material properties, is independent
of resolution changes. Thus, we introduce general semantic fea-
tures (reflecting local region attributes) and illumination features
(reflecting regional illumination properties) for modulation.

In the Decoder Block (DB), each layer’s reflectance feature in the
decoder undergoes layer normalization, 1×1 convolution, and 3×3
depth-wise convolution, generating semantic query, reflection key,
and reflection value projections. Next, the semantic query and re-
flection key perform matrix multiplication to generate the semantic
attention map, which is then normalized and used for adaptively
updating the reflectance feature. This involves element-wise multi-
plication and convolution, with a learnable scaling factor adjusting
the operations. The updated reflectance feature is enhanced by a
feed-forward network (FFN) for content reconstruction [24]. Simi-
larly, illumination features from the LII decoder are combined with
semantically guided reflectance features and processed through illu-
mination attention. The resulting illumination query, reflection key,
and reflection value projections are dynamically enhanced. Finally,
the enhanced features are processed again by the FFN, yielding
the doubly modulated reflection feature that integrates both se-
mantic and illumination information for improved low-light image
enhancement.

3.2 Tri-level Optimization Formulation
Bidirectional Co-op Dependency. Existing methods often focus
on a single task, either brightness adjustment or resolution enhance-
ment, seldom considering the interdependent coupling between
the two. Recognizing that LII and LFR, can mutually reinforce each
other—where precise luminance improvement by LII can facilitate
better super-resolution outcomes in LFR, and conversely, the de-
tailed enhancement by LFR can enhance the illumination learning
in LII—we model these consecutive learning tasks as a hierarchical
optimization problem, formalized as follows:

min
𝝎𝒊

Φ𝑢𝑙
(
𝝎𝒊,𝝎∗𝒔 ; {D𝑢𝑙 }

)
, 𝑠 .𝑡 ., 𝝎∗𝒔 ∈ P𝑙 (𝝎𝒊),

P𝑙 (𝝎𝒊) := arg min
𝝎𝒔

Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 ; {D𝑙𝑙 }),
(2)

whereP𝑙 (·) denotes the solution set, withD𝑙𝑙 andD𝑢𝑙 representing
the lower and upperlevel datasets, respectively.

The hierarchical formulation explicitly delineates the collabora-
tive training modality between 𝑁𝑖𝑟 and 𝑁𝑓 𝑟 . This collaboration is
heavily contingent upon the judicious selection of lower and upper
level objectives, ensuring that the sub-networks can reciprocally
foster enhancement and positive feedback. This raises a pivotal
question: How can we automate the assignment of high hyperpa-
rameters that significantly foster positive influences on the learning

Algorithm 1 Optimization strategy for TriCo.

Require: Initialize𝜔 := {𝝎𝒊,𝝎𝒔 }, with 𝝇 as a unit vector. Learning
rate:𝜸𝒖 ,𝜸𝒍 , 𝒐𝒖 and 𝒐𝒍 ; Total iterationsK . Split {D} := {D𝑢𝑙 }∪
{D𝑙𝑙 } with partition ratio 𝑠 . Set candidate loss space T .

Ensure: The optimal parameters 𝝇, 𝜔 .
1: % % S1: Automated learning for 𝝇.
2: while not converged do
3: % % Upper-level variable update:
4: �̂� ← 𝝎 −𝜸𝒍

𝜕Φ𝑙𝑙 (𝝇,𝝎 )
𝜕𝝎 , 𝝎± ← 𝝎 ± 𝜆 𝜕Φ𝑙𝑙 (𝝇,�̂� )

𝜕𝝎

5: A𝜔 ← 1
2𝜆 (

𝜕Φ𝑙𝑙 (𝝇,𝝎+ )
𝜕𝝇 − 𝜕Φ𝑙𝑙 (𝝇,𝝎− )

𝜕𝝇 )

6: 𝝇 ← 𝝇 −𝜸𝒖 𝜕Φ𝑢𝑙 (𝝇,�̂� )
𝜕𝝇 +𝜸𝒍A𝜔

7: % % Middle-level variable update:
8: 𝝎 ← 𝝎 −𝜸𝒍

𝜕Φ𝑙𝑙 (𝝇,𝝎 )
𝜕𝝎

9: end while
10: % % S2: Optimization for {𝝎𝒊,𝝎𝒔 } with frozen 𝝇.
11: while not converged do
12: % % Middle-level variable update:
13: 𝝎𝒔 ← 𝝎𝒔 − 𝒐𝒍

𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 )
𝜕𝝎𝒔

, 𝝎± ← 𝝎𝒔 ± 𝜆 𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 )
𝜕𝝎𝒔

14: B𝜔𝑠
← 1

2𝜆 (
𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎+𝒔 )

𝜕𝜔𝑖
− 𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎−𝒔 )

𝜕𝜔𝑖
)

15: 𝜔𝑖 ← 𝜔𝑖 − 𝒐𝒖 𝜕Φ𝑢𝑙 (𝝎𝒊,�̂� )
𝜕𝜔𝑖

+ 𝒐𝒍B𝜔𝑠

16: % % Lower-level variable update:
17: 𝝎𝒔 ← 𝝎𝒔 − 𝒐𝒍

𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 )
𝜕𝝎𝒔

18: end while

tasks? Delving deeper into this inquiry, we transcend the confines
of the hierarchical optimization framework and venture into an
expanded horizon—establishing a nested optimization problem that
encompasses both lower and upper levels, aimed at the autonomous
learning of beneficial constraints for two learning tasks.

Tri-level Constraint Modeling. Evidently, to automate the de-
termination of constraints that significantly influence the learning
tasks through weight allocation, we introduce a novel concept, the
hyper-variable 𝝇. This hyper-variable, along with the two preceding
variables 𝝎𝒊 and 𝝎𝒔 , forms a new set of constraint relationships,
thereby constituting a hierarchical optimization problem based on
three variables, as shown below:


min
𝝇

Φ𝑢𝑙
(
𝝇,𝝎∗𝒊 ,𝝎

∗
𝒔 ; {D𝑢𝑙 }

)
, 𝑠 .𝑡 ., (𝝎∗𝒊 ,𝝎

∗
𝒔 ) ∈ P𝑙 (𝝇),

P𝑙 (𝝇) := arg min
𝝎𝒊,𝝎𝒔

Φ𝑙𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ; {D𝑙𝑙 }),
(3)

where 𝝎∗𝒊 and 𝝎∗𝒔 represent the best-reponse for a given 𝝇. These
three variables are highly interdependent and dynamically influ-
ence each other throughout the training process. This modeling ap-
proach offers significant advantages: firstly, it explicitly defines the
mathematical relationships betweenmultiple variables, allowing for
dynamic feedback during training, thereby enhancing training effi-
ciency. Secondly, it automates the determination of constraints’ pos-
itive feedback, overcoming the reliance on manual hyper-parameter
tuning based on empirical knowledge, thereby reducing the need
for extensive manual intervention.
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3.3 Algorithmic Procedure
Moving forward, we devise a Phased Gradient-Response (PGR) al-
gorithm that iterates from the upper to the lower layers, serving
as the training strategy. Specifically, we define a comprehensive
function as the weighted sum of multiple losses related to the hyper-
variables 𝝇, addressing various specific attributes (e.g., brightness,
color, exposure, smoothness, and content) pertinent to multi degra-
dation restoration tasks. The total loss is defined as follows:

L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ; {D}) =
𝑁∑︁
𝑢=1

𝝇𝑢 · L𝑢 (𝝇,𝝎𝒊,𝝎𝒔 ), L𝑢 ∈ T, (4)

where the hyper-variable is denoted as 𝝇 := {𝝇𝑢 }𝑁𝑢=1 ∈ R𝑁 . T
represents the loss selection set. Please refer to Sec. 3.4 for T. To
prevent ambiguous solutions during training and safeguard against
overfitting, we introduce a regularization constraint term for 𝝇,
thereby reformulating the total loss as: L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ; {D}) =∑𝑁
𝑢=1

1
2𝝇𝑢 · L𝑢 (𝝇,𝝎𝒊,𝝎𝒔 ) + ln(1 + 𝝇2

𝑢 ) . The training set is divided
into proportions denoted by 𝜂, thus the upper and lower levels
are abstractly defined as: Φ𝑢𝑙 := L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ;D𝑢𝑙 ), Φ𝑙𝑙 :=
L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ;D𝑙𝑙 ). Next, we decompose the problem into two
stages of hierarchical optimization to solve the tri-level coupled
problem step by step.

Optimization Algorithm. Following the first-order gradient
algorithm based on hierarchical optimization [36], we compute the
composite upper gradients based on the best-response from the
lower optimization. We first calculate the upper-level gradient:

∇𝝇Φ𝑢𝑙
(
𝝇,𝝎

)
=

𝜕Φ𝑢𝑙
(
𝝇,𝝎∗ (𝝇 )

)
𝜕𝝇

+
𝜕Φ𝑢𝑙

(
𝝇,𝝎∗ (𝝇 )

)
𝜕𝜔

∇𝝇𝝎∗ (𝝇 ) . (5)

For simplicity, we define the lower-level variables as𝝎 := {𝝎𝒊, 𝝎𝒔 }.
The second term, the coupled gradient, is denoted as A𝜔 . Subse-
quently, based on a single-step gradient descent to approximate the
best-response, we calculate the finite difference approximation [33]
for the coupled gradientA𝜔 asA𝜔 = 1

2𝜆 (
𝜕Φ𝑙𝑙 (𝝇,𝝎+ )

𝜕𝝇 − 𝜕Φ𝑙𝑙 (𝝇,𝝎− )
𝜕𝜍 ),

where 𝝎± ← 𝝎 ± 𝜆 𝜕Φ𝑙𝑙 (𝝇,𝝎 )
𝜕𝝎 , and 𝜆 denotes a constant learning

rate. For the second phase, a similar derivation to the first phase is
implemented. Given the optimal hyper-variable 𝝇∗ obtained from
the first stage, we compute the upper-level gradient with respect to

the variable 𝝎𝒊 : ∇𝝎𝒊Φ
𝑢𝑙
(
𝝎𝒊,𝝎𝒔

)
=

𝜕Φ𝑢𝑙
𝝇∗
(
𝝎𝒊,𝝎∗

𝒔 (𝝎𝒊 )
)

𝜕𝝎𝒊
+ B𝜔𝑠

, where

B𝜔𝑠
=

𝜕Φ𝑢𝑙
𝝇∗
(
𝝎𝒊,𝝎∗

𝒔 (𝝎𝒊 )
)

𝜕𝝎𝒔
∇𝝎𝒊𝝎

∗
𝒔 (𝝎𝒊). Ultimately, the optimization

process across both stages is amalgamated to form our training
strategy, which is summarized in Alg. 1.

3.4 Loss Objectives
As illustrated in Fig. 2, we propose a set of five specific loss objec-
tives constituting a candidate space that encapsulates the model’s
constraints on brightness, color, exposure, smoothness, and content
attributes, denoted as the set T, as follows:
• To ensure that the generated reflectance aligns with the lumi-
nance attributes of large-scale natural ImageNet dataset [12]
in a consistent distribution, we introduce the self-regularized
luminance loss: L𝑠𝑟𝑙 :

L𝑠𝑟𝑙 (v) = 𝑒 |v̄𝑐−𝝁𝑐−𝝈𝑐 | − 1, 𝑐 ∈ {𝑅,𝐺, 𝐵}, (6)

Table 1: Quantitative comparison among cascaded LLE meth-
ods and SR method (i.e., LLE⇒ HAT) on RELLISUR dataset
and LOL-v2 dataset. The best three results are bolded.

Method RELLISUR @ ×2 / @ ×4
PSNR↑ SSIM↑ LPIPS↓

HAT [4] 20.213 / 19.751 0.719 / 0.715 0.454 / 0.561
ZeroDCE [29]⇒ HAT [4] 12.927 / 12.524 0.354 / 0.321 0.698 / 0.739
SCI [46]⇒ HAT 14.963 / 14.776 0.439 / 0.452 0.591 / 0.697
LLFormer [61]⇒ HAT [4] 21.218 / 20.135 0.720 / 0.718 0.455 / 0.575
Retinexformer [2]⇒ HAT [4] 21.326 / 20.142 0.725 / 0.722 0.421 / 0.544

Ours 22.456 / 21.056 0.744 / 0.7310.304 / 0.432

Method LOL-v2 @ ×2 / @ ×4
BRISQUE↓ NIQE↓ MetaIQA↑

HAT [4] 48.978 / 66.220 9.325 / 10.381 0.387 / 0.371
Retinexformer [2]⇒ HAT [4] 49.510 / 58.280 8.026 / 9.561 0.360 / 0.362

Ours 44.191 / 56.475 7.910 / 8.8210.368 / 0.391

where v̄𝑐 signifies the operation of computing the mean
across channels. Channel means and standard deviations are
𝝁𝑐 = [0.485, 0.456, 0.406] and 𝝈𝑐 = [0.229, 0.224, 0.225].
• We employ the standard content reconstruction loss between

y𝒏𝒔 and z𝒏𝒉 utilizing the 𝐿1 norm:

L𝑐 (y𝒏𝒔 , z𝒏𝒉 ) =
1

ℎ𝑤𝑐

∑︁
𝑖,𝑗,𝑘 |y𝑛𝑠𝑖,𝑗,𝑘 − z𝑛ℎ𝑖,𝑗,𝑘 |, (7)

where ℎ,𝑤 , 𝑐 are the height, width, and channel count.
• We also introduce the semantic perceptual loss function to
maintain semantic congruence between y𝒏𝒔 and z𝒏𝒉:
L𝑝 (y𝒏𝒔 , z𝒏𝒉 ) = | |VGG19𝑗 (y𝒏𝒔 ) − VGG19𝑗 (z𝒏𝒉 ) | |1, (8)

where 𝑗 indicates the j-th feature extraction layer, which
includes layers from conv1, · · · , conv5.
• We employ the SSIM loss L𝑠𝑠𝑖𝑚 to maintain the structural
similarity between y𝒏𝒔 and y𝒏𝒉 .
• We incorporate a total variation metric [53] to reduce noise
and enhance image smoothness:

L𝑡𝑣 (y𝒏𝒔 ) =
∑︁

𝜉 ∈𝜋 ( |∇ℎy𝒏𝒔
𝜉
| + |∇𝑣y𝒏𝒔

𝜉
| ), (9)

where 𝜋 = {𝑅,𝐺, 𝐵}, ∇ℎ and ∇𝑣 are the horizontal and verti-
cal gradient operators, respectively.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets and Metrics. We evaluated the benchmark performance
of all compared methods across four datasets: 1) RELLISUR [1]1,
2) Dark-Zurich [54], 3) LOL-v2 [69], and 4) Cityscapes [7]. In the
evaluation phase, we employ three full-reference metrics to assess
the performance, namely Peak Signal-to-Noise Ratio (PSNR) [3],
Structural Similarity Index (SSIM) [64], Learned Perceptual Image
Patch Similarity (LPIPS) [75]. Additionally, we introduce three no-
reference assessments, namely Natural Image Quality Evaluator
(NIQE) [49], Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [48] and MetaIQA [78], to evaluate non-paired metrics.
1https://vap.aau.dk/rellisur/
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Figure 3: Illustrating the convergence curve of the hyper-variable {𝝇𝑢 }5𝑢=1 and the total loss L𝑡𝑜𝑡𝑎𝑙 , based on Alg. 1.

Figure 4: Illustrating (Above) the probability density histogram trends and (Below) enhancement outcomes for the same sample
(i.e., 00018) under five different levels of darkness. Note that from -2.5EV to -4.5EV indicates increasing darkness.

Table 2: Quantitative comparison on RELLISUR dataset for ×2 / ×4 tasks. The best three results are bolded.

Method PSNR↑ SSIM↑ LPIPS↓ #Param. (M) ↓ #FLOPs (G)↓ #Infer. (s)↓ #FPS↑
MIRNet [73] 21.052 / 19.784 0.720 / 0.704 0.436 / 0.599 31.814 196.563 0.036 27.24
SwinIR [32] 18.383 / 17.531 0.640 / 0.663 0.577 / 0.688 11.756 57.381 0.116 8.64
LCUN [6] 18.911 / 18.463 0.684 / 0.657 0.531 / 0.644 - - - - - - - -
Restormer [72] 21.217 / 20.290 0.727 / 0.720 0.385 / 0.492 26.126 35.375 0.033 26.87
SRFormer [76] 19.554 / 18.792 0.704 / 0.705 0.469 / 0.613 10.162 81.797 0.218 3.01
HAT [4] 20.213 / 19.751 0.719 / 0.715 0.454 / 0.561 9.473 58.990 0.184 5.31

Ours 22.456 / 21.056 0.744 / 0.731 0.304 / 0.432 1.421 20.774 0.024 41.67

Implementation Details.We adhere to the tri-level learning
strategy as outlined in Alg. 1 for our network training, with the total
number of iterations set to 150,000. We utilize the Adam optimizer
with beta values configured at [0.9, 0.999]. The initial learning
rates for the upper and lower layers of the two stages are set to
𝜸𝒖 = 1𝑒−4, 𝜸𝒍 = 2𝑒−4, 𝒐𝒖 = 1𝑒−4 and 𝒐𝒍 = 1𝑒−4, respectively. A
cosine annealing restart strategy is implemented for cyclic learning
rate scheduling. The dataset {D} is partitioned into {D𝑢𝑙 } ∪ {D𝑙𝑙 }
and at a distribution ratio of 1 : 5. Experiments are conducted
using PyTorch version 2.0.1, which supports CUDA 11.7, on a single
NVIDIA RTX A6000 GPU with 48GB of RAM.

Compared Methods. To substantiate the efficacy of our pro-
posed methodology, we conduct a comprehensive comparison with
a diverse array of SOTA methods in LLE and SR. Specifically, we
meticulously benchmark against 4 emblematic LLE techniques,
namely ZeroDCE [29], SCI [46], and LLFormer [61], Retinexformer

[2], alongside 6 SR methods, which include 5 under normal lighting
conditions—SwinIR [32],MIRNet [73], Restormer [72], SRFormer [76],
and HAT [4]—and one dedicated to low-light scenarios, LCUN [6].
Notably, the enhancement results on the RELLISUR dataset for the
sole low-light SR method, LCUN, were furnished by the authors
themselves. To ensure a fair comparison, we retrain the publicly
available codes of all competing methods on the training set of the
RELLISUR dataset.

4.2 Mechanism Evaluation
Algorithm Analysis. Following Alg. 1, we undertake a tri-level
automated training regimen to sequentially optimize the three vari-
ables. Fig. 3 illustrates the convergence trend of the outermost
variable and the overall loss function throughout the iterations.
During the S1 cycle in Alg. 1 (refer to steps 1 to 8), the upper-level
variable {𝝇𝑢 }5𝑢=1 evolves from an initial unit vector to eventually
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Figure 5: Visual assessments on RELLISUR examples for a ×2 magnification task.

Figure 6: Visual comparisons (Left) and quantitative results on three metrics (Right) for enhancing brightness and enlarging
low-light images on real nighttime Dark-Zurich samples. Note here, LLFormer⇒HAT is abbreviated as LLF⇒HAT.

Darken Restormer SRFormer

HAT LLFormer ⇒ HAT Ours

Raw

Figure 7: Qualitative and quantitative evaluations of various
methods on the darken Cityscapes dataset.

converge to [0.473, 2.177, 0.181, 0.901, 0.195]. This convergence elu-
cidates that the constraints positively influencing the learning task,

as hypothesized by our algorithm, are indeed effective. It is possible
to autonomously identify which constraints significantly foster a
positive impetus for the learning task through adaptive weight al-
location. Notably, the top three constraints—perceptual constraint,
smoothness constraint, and reconstruction constraint—play a piv-
otal role in augmenting performance, underscoring the efficacy of
our proposed approach in leveraging these constraints for enhanced
learning outcomes. To evaluate model efficiency, we present the
parameters, FLOPs, inference time, and FPS of compared SOTA
methods in Tab. 2. The evaluations are performed on a single 2080
Ti GPU using images of size 128 × 128. Excluding the parameters
of the frozen SAM model, our network has a parameter count of
less than 1.4MB. In conclusion, our network achieves a favorable
balance between performance and efficiency.

Robustness Verification. Fig. 4 conducts a robustness anal-
ysis across varying levels of darkness. Five distinct levels of low
exposure are generated by adjusting exposure time, resulting in
corresponding dark images (e.g., -2.5EV, -3.0EV, -3.5EV, -4.0EV, and
-4.5EV). Our method maintains consistent enhancement across vari-
ous levels of darkness. This is visually corroborated by the probabil-
ity density histograms, which demonstrate a uniform consistency
distribution across the five different levels of darkness, highlighting
the high robustness of our model to inputs under varying levels of
darkness.
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Table 3: Ablation studies of the Alg. 1 (in terms of w/ or w/o
S1 and S2) and DB on RELLISUR dataset.

Config. Alg. 1 (w/o S1) Alg. 1 (w/o S2) w/ DB ❶PSNR↑ ❷SSIM↑

0 ✓ ✓ ✓ 22.456 0.744
1 ✓ ✓ 21.997↓0.459 0.727↓0.017
2 ✓ ✓ 22.243↓0.213 0.735↓0.009
3 ✓ ✓ 21.959↓0.497 0.726↓0.018

Figure 8: Comparison analysis of the naive training strategy
and our TriCo strategy.

4.3 Comparisons with State-of-the-Art
Evaluation on RELLISUR. Tab. 2 presents the quantitative re-
sults for low-light super-resolution tasks at ×2 and ×4 scales on
the RELLISUR dataset. While cascading strategies prove effective,
the improvement is not drastic. Relative to the second-best method,
our approach achieves significant enhancements across all metrics
(e.g., a 5.8% increase in PSNR, a 2.3% boost in SSIM, and a 21.0%
leap in LPIPS). The substantial improvements in LPIPS underscore
our method’s capability to refine textures and robustly adapt to
various extreme low-light conditions. Fig. 5 showcases a visual com-
parison on RELLISUR for simultaneous brightness adjustment and
×2 upscaling. The majority of the compared methods suffer from
significant noise and blur issues, especially observable in SwinIR,
LCUN, and SRFormer. Some cascaded approaches exhibit severe
color bias and insufficient brightness enhancement. In contrast, our
method is capable of producing images with vivid luminance and
excellent restoration of high-frequency structural details. Signal
plots intuitively confirm the consistency between our method and
the reference images at the pixel intensity level.

Evaluation on Real Nighttime Scenarios. As illustrated in
Fig. 6, we assess the generalization performance of the entire bench-
mark suite under the real-world challenging scenario: dimly lit
urban streetscapes at night, based on Dark-Zurich dataset. Fig. 7
showcases a comparison of enhancement methods applied to the
Darken Cityscapes Dataset. Compared to other methods that either
exhibit noticeable color bias or suffer from large areas of under-
exposure and overexposure, it can be seen that our method has
generated clearer structural details.

4.4 Ablation Analyses
Effectiveness of DB. When the DB module is removed, as seen
in Config.3 of Tab. 3, there is a noticeable performance drop —
approximately 2.2% in PSNR and 2.4% in SSIM — compared to
the optimal model, Config.0. Fig. 9 presents the ablation results
with the feature visualizations facilitated by DB. We visualized the

Figure 9: Illustrating of intermediate layer feature visualiza-
tion for the DB module.

Table 4: Ablation of loss functions on RELLISUR dataset.

No. –> Loss function ablation PSNR↑ (trained during S1 cycle)

❶:w/o L𝑝 loss ❷:w/o L𝑠𝑠𝑖𝑚 loss ❶: 19.987↓1.055 ❷:20.906↓0.136

❸:w/o L𝑡𝑣 loss ❹:w/ Full loss ❸:21.036↓0.006 ❹:21.042

features before and after the DB process in the last three decoding
layers. Upon comparison, the features prior to DB appear more
sparse and scattered, with a distinct lack of textural detail (see the
discernible regions within the dashed circles: the car wheels). Post-
DB features, however, exhibit a more abstract and semantically rich
visual representation. This indicates that DB fosters a greater focus
on capturing higher-level semantics.

Analysis of the Solution Algorithm.We conduct the ablation
study to quantify the impact of the proposed algorithm compo-
nents, with comparative results detailed in Tab. 3, from Config.0
to Config.3. Omitting the S1 strategy alone leads to a performance
degradation of approximately 2% in PSNR and 2.2% in SSIM com-
pared to the best-performing model, Config.0. Similarly, removing
only the S2 strategy results in a reduction of about 0.9% in PSNR and
1.2% in SSIM relative to Config.0. This delineation underscores the
critical importance of synergistically integrating S1 and S2 strate-
gies to achieve the superior performance set forth by Config.0.

Ablation of the Loss Functions. Tab. 4 reports the ablation
analysis results of three empirical loss functions. Please note that the
four sets of different experiments in the table were conducted with
only the S1 training cycle (i.e., 6000 iterations) for a fair comparison.
The PSNR improvements associated with each loss highlight their
importance, which correlates with the coefficients of the upper-
level hyper-variables automatically learned by our algorithm (see
Fig. 3 in Sec. 4.2).

5 CONCLUSION AND REMARKS
This investigation delves into the intricate realm of brightening
and magnifying ultra-dark images, a pursuit fraught with practi-
cal complexities due to the dual dilemmas of low resolution and
profound darkness. Our tailored TriCo, adopts a tri-level learning
strategy that intertwines the tasks of illumination enhancement
and super-resolution. By fostering the collaborative learning, TriCo
effectively negates the historical deficiencies of isolated or simplis-
tic task handling. TriCo’s strategic innovation can be applied to
other high-level semantic tasks in more adverse lighting scenarios.
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